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a b s t r a c t

Electrochemical impedance spectroscopy (EIS) is one of the most important experimental techniques
employed in electrochemistry because it can be used to deconvolve physico-chemical phenomena occur-
ring at disparate timescales. Unfortunately, the analysis of EIS data is frequently challenging since it can
require the selection of ad hoc equivalent circuits. The distribution of relaxation times (DRT) method is
complementary to the approach of fitting equivalent circuits because the DRT maps the EIS data onto
a function containing the timescale characteristics of the system under study. While conceptually sim-
ple, the DRT cannot be obtained by simple minimization of the least squares because the corresponding
optimization problem is ill posed. Regularization methods, such as ridge/Tikhonov or Lasso regression,
add a penalty term to the least squares minimization problem enabling the DRT deconvolution. In this
work, we show that such regularization methods may be understood in a Bayesian context. For example,
ridge/Tikhonov regression implicitly encapsulates the prior insight that the derivatives of the DRT are
regular. We use this Bayesian approach as a starting point to extend the DRT regularization by considering
frequency dependent oscillation levels. This approach is shown to be more robust with respect to both
discontinuities and over smoothing than typical regularized DRT methods. Furthermore, the Bayesian
approach is versatile and may be extended to include more informative priors.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is one of the key
techniques used in electrochemistry [1–5] and has been utilized
in many areas including fuel cells [6–10], batteries [11–14], sen-
sors [15–17], capacitors [18], dielectrics [19,20], electrochemical
coating [21,22], imaging [23,24], and biology [25,26], just to list
a few applications. The EIS is particularly useful in these fields
because it is conducted over a broad range of frequencies allowing
the deconvolution of physic-chemical phenomena characterized
by disparate timescales [27].

The EIS data are acquired by applying small voltage (or current)
perturbation to an electrochemical system so as to measure the
corresponding current (or voltage) [2]. This is repeated at various
frequencies to obtain the EIS spectrum. The latter is typically
understood as the ratio between the voltage and the current
in frequency space [5]. Namely, it is a complex-valued function
defined as the Fourier transform of the potential v(t) divided by
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the Fourier transform of the current i(t)

Z(f ) = V(f )
I(f )

(1)

where V (f ) = � [v (t)] (f ) and I (f ) = � [i (t)] (f ) and where we
take the unitary Fourier transform definition: � [h (t)] (f ) =∫ ∞

−∞ h (t) exp (−2�ift)dt. The experimental impedance is then used
to understand the physico-chemical properties of the system
under study. For this purpose having a reliable model is critical
because it aids the experimental data interpretation. Typical EIS
models consist of a collection of elementary circuits, e.g., resistors,
capacitors, constant phase elements, and Warburg circuits placed
in series or in parallel. In spite of notable exceptions [27–38], the
circuits are often selected ad hoc so as to follow physical intuition
and the principle of parsimony [27,39,40]. Furthermore, such
equivalent circuits may not be unique, in that several of them
may fit the data equally well. This comes to the detriment of the
physical insight that one can obtain from the EIS experiments.

One way to bypass the lack of uniqueness of problem-specific
equivalent circuits (and therefore complement the analysis of the
EIS) is to use the distribution of relaxation times (DRT) method
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[10,14,41–54], which models the impedance as ZDRT (x, f ), where x
is an unknown and possibly large vector. In turn x can be mapped
onto the relaxation characteristics that characterize the electro-
chemical system under study. The entries of x are obtained by
minimizing the sum of the absolute value of the residuals com-
puted between the experimental data Zexp (f ) and ZDRT (x, f ) at the
experimental frequencies fn

S (x) =
N∑
n=1

[
w′
n

(
Z ′

exp (fn) − Z ′
DRT (x, fn)

)2

+w′′
n

(
Z ′′

exp (fn) − Z ′′
DRT (x, fn)

)2
]

(2)

where Z′ and Z′′ indicate the real and imaginary part of the
impedance respectively and w′

n and w′′
n are suitable weights. If

x has size close to N, the minimization of (2) is ill posed yield-
ing solutions highly dependent on the experimental error. There
are a number of ways to circumvent this problem. Researchers
have employed Fourier transformation and filtering [41,47], Monte
Carlo techniques [43,44], maximum entropy methods [55–57], and
advanced evolutionary programming [50–52,58]. One particularly
popular method consists in minimizing the following expression
[10,14,59–66]:

S (x) =
N∑
n=1

[
w′
n

(
Z ′

exp (fn) − Z ′
DRT (x, fn)

)2

+w′′
n

(
Z ′′

exp (fn) − Z ′′
DRT (x, fn)

)2
]

+ �P (x) (3)

where the second term on the left hand side is the product of a
function P( x), a penalty, and a positive parameter �. The penalty
can be, as in ridge (or Tikhonov) regression, the norm of the second
derivatives of the DRT obtained from x.

In this article we aim at answering two open questions regarding
DRT analysis:

1. Can the penalty term in the minimization problem (3) be under-
stood using statistics?

2. Can we find a statistically motivated method to extend ridge DRT
so that the level of regularization (as expressed by � in (3)) can
vary across the timescales?

We show that the regularized DRT can be derived from Bayesian
statistics arguments [67]. In other words, the term �P (x) in (3)
encapsulates the prior physical information available on the DRT.
For example, ridge regression provides the (prior) information that
the qth-order derivative of the DRT is distributed as a Gaussian ran-
dom variable with standard deviation 1√

�
. Therefore, the smaller �

is, the larger the oscillations are expected to be. Conversely, a large
� implies that one expects much smaller oscillations. This answers
the first question.

The simple Bayesian approach outlined above assumes, how-
ever, that the level of regularization is uniform throughout the
entire frequency spectrum. Equivalently, the prior implies that the
same oscillation rates in the DRT are expected to occur across all
timescales. In order to select a local � and yet take only a limited
number of tunable parameters, a hierarchy of Bayesian priors need
to be used [68]. In this hierarchical approach (we have a prior of
the prior itself), the DRT and the optimal penalty level are found
simultaneously. This addresses the second question.

More broadly, the Bayesian framework proposed in this arti-
cle serves as a starting point for extending DRT regression and for
improving the interpretation of the DRT spectra.

2. Theory

2.1. The DRT Method

As outlined in the introduction, the DRT method assumes that
the response of the electrochemical system under study is obtained
from a distribution of relaxations (see Appendix A for details). Thus,
the impedance can be written as

ZDRT (f ) = R∞ +
∫ ∞

0

g(�)
1 + i2�f� d� (4)

where R∞ and g (�) are both non negative and where the DRT
subscript is used to emphasize that �−1

[ZDRT (f )] (t) is a sum of
decaying exponentials. Since many electrochemical experiments
are conducted with a given number of points per decade, the (4)
can be more conveniently rewritten as

ZDRT (f ) = R∞ +
∫ ∞

−∞

�(ln �)
1 + i2�f� dln� (5)

where � (ln �) = �g (�) ≥ 0. We will use (5) in the remainder of the
article.

The main goal of the DRT analysis is to obtain an estimate of
�(ln�). In order to do that, we first need to approximate � (ln �) and
ZDRT (f ) using a suitable discretization. Subsequently, we estimate
the discrete approximation using regression. The discretization of
� (ln �) can be obtained by expanding the DRT over a given finite
basis B =

{
 1(ln �), 2(ln �), . . ., M(ln �)

}
as [69]

� (ln �) =
M∑
m=1

xm m(ln �) + ediscr(ln �) (6)

where the xm ’ s are scalars and where ediscr(ln�) is the discreti-
zation error. The latter depends on the basis B chosen and on the
particular function � (ln �). By plugging (6) into (5), we can write
the following vector equation

ZDRT = R∞1 + A′ x + iA′′ x + eapprox (7)

where (ZDRT)n = ZDRT(fn) with 1 ≤ n ≤ N, 1 is a vector with N entries
all equal to 1, x = (x1, x2, . . ., xM)T , A′ and A′′ are real N × M
matrices, and (eapprox)n is the error made in approximating (at the
frequency fn) the DRT (5) using the first 3 terms on the right hand
side of equation (7). We emphasize that M, the dimension of the
basis, and N, the total number of experimental points, need not
be identical. Further, we will consider that our model is simply
ZDRT = R∞1 + A′ x + i A′′ x. The x of the expansion (6) can then
be obtained via regularized regression by solving the following
problem with respect to x [53]

x = argmin
x≥0

[∥∥�′ (R∞1 + A′ x − Z ′
exp

)∥∥2

+
∥∥�′′ (A′′ x − Z ′′

exp

)∥∥2 + �P (x)
]

(8)

The first two terms are the sum of the residuals (the measure of
the distance between the data and the model) weighted in accor-

dance to the matrices �′ and �′′i. If we set P (x) =
∥∥L x

∥∥2
, where L is

a suitable qth order differentiation matrix, we obtain the ridge DRT.

i In reference to (2), �′ = diag

(
1√
w

′
1

, 1√
w

′
2

, . . ., 1√
w

′
N

)
�′′ =

diag

(
1√
w

′′
1

, 1√
w

′′
2

, . . ., 1√
w

′′
N

)
.
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