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Abstract

We investigate simulations for gauge theories on a Minkowskian space–time lattice. We employ stochas-
tic quantization with optimized updating using stochastic reweighting or gauge fixing, respectively. These
procedures do not affect the underlying theory but strongly improve the stability properties of the stochastic
dynamics, such that simulations on larger real-time lattices can be performed.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

First-principles simulations for gauge field theories such as quantum chromodynamics (QCD)
on a Minkowskian space–time lattice represent one of the outstanding aims of current research.
Typically, calculations are based on a Euclidean formulation, where the time variable is analyt-
ically continued to imaginary values. By this the quantum theory is mapped onto a statistical
mechanics problem, which can be simulated by importance sampling techniques. In contrast,
for real times standard importance sampling is not possible because of a non-positive definite
probability measure.

Simulations in Minkowskian space–time, however, may be obtained using stochastic quanti-
zation techniques, which are not based on a probability interpretation [1,2]. In Refs. [3,4] this
has been recently used to explore the real-time dynamics of an interacting scalar quantum field
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theory and SU(2) gauge field theory in 3 + 1 dimensions. In real-time stochastic quantization
the quantum ensemble is constructed by a stochastic process in an additional “Langevin-time”
using the reformulation for the Minkowskian path integral [5,6]: The quantum fields are defined
on a physical space–time lattice, and the updating employs a Langevin equation with a complex
driving force in an additional, unphysical “time” direction. Though more or less formal proofs
of equivalence of the stochastic approach and the path integral formulation have been given
for Minkowskian space–time, not much is known about the general convergence properties and
its reliability beyond free-field theory or simple models [6,7]. Most investigations of complex
Langevin equations concern simulations in Euclidean space–time with non-real actions [8,9].

In Ref. [4] real-time stochastic quantization was applied to quantum field theory without fur-
ther optimization. For SU(2) gauge theory no stable physical solution of the complex Langevin
equation could be observed even for small couplings. The physical fixed point was found to
be approached at intermediate Langevin-times, however, deviations occurred at later times. The
onset time for deviations could be delayed and physical results extracted, if the real-time ex-
tent of the lattice was chosen to be sufficiently small on the scale of the inverse temperature.
This procedure provided severe restrictions for actual applications of the method. In contrast, for
self-interacting scalar field theory stable physical solutions were observed.

In this paper we investigate real-time stochastic quantization for gauge theories employing
an optimized updating procedure for the Langevin process. We consider optimized updating
using stochastic reweighting or gauge fixing, respectively. These procedures do not affect the
underlying theory but strongly improve the stability properties of the stochastic dynamics. For
SU(2) gauge theory in 3 + 1 dimensions we demonstrate that gauge fixing leads already to stable
physical solution for not too small β ∼ 1/g2, where large β correspond to going to the continuum
limit of the lattice gauge theory. Where applicable, the results are shown to accurately reproduce
alternative calculations in Euclidean space–time. In order to gain analytical understanding and to
compare to exact results we also investigate U(1) and SU(2) one-plaquette models.

The paper is organized as follows. In Section 2 we briefly review real-time stochastic quan-
tization for non-Abelian lattice gauge theory following Ref. [4]. The U(1) one-plaquette model
of Section 3.1 is used to introduce the concept of stochastic reweighting in Section 3.1.3. The
simplicity of the model allows us to compare simulation with analytical results and to investigate
in some detail the fixed point structure and convergence properties is Sections 3.1.4 and 3.1.5. In
Section 3.2 we consider the SU(2) one-plaquette model and introduce some important notions
that will be employed for the optimized updating using gauge fixing for the lattice field theory
in Section 4. We present conclusions in Section 5 and an appendix provides some mathematical
details.

2. Real-time gauge theory

Gauge theories on a lattice are formulated in terms of the parallel transporter Ux,μ associated
with the link from the neighboring lattice point x + μ̂ to the point x in the direction of the lattice
axis μ = 0,1,2,3. The link variable Ux,μ = U−1

x+μ̂,−μ
is an element of the gauge group G. For

G = SU(N) or U(1) one has U−1
x,μ = U

†
x,μ, however, since we will consider a more general

group space in the context of stochastic quantization this will not be assumed. Therefore, we
keep U−1

x,μν in the definition of the action, which is described in terms of the gauge invariant
plaquette variable

(1)Ux,μν ≡ Ux,μUx+μ̂,νU
−1
x+ν̂,μ

U−1
x,ν,
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