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A B S T R A C T

Mathematical solutions were obtained for the impedance of one-dimensional transmission-line (TML)
models with all possible variations of the boundary conditions and connections to an external circuit.
First, three types of connection (Z-type, T-type, and E-type) were considered. A more generalized
connection that includes the characteristics of both Z-type and T-type (universal-type) was also
considered. All four of the resulting general solutions were versatile, but quite complicated. Next,
comprehensive variations of the general solutions depending on specific boundary conditions, which are
generally simpler, were also considered. Finally, an equivalent transform from a three-terminal TML
model to a simple Y-circuit was calculated. This enables calculation of the serial connection of multiple
TML models with different parameters, which represents a multi-layered electrode.

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transmission-line (TML) models are generally used to describe
the electrochemical impedance response of a system with an
electrode | electrolyte interface that is distributed not only in the
vertical direction with respect to the electric current, but also in
the parallel direction, such as a porous electrode [1–7] or an
electrode with a lateral ionic current in a thin electrolyte film
covering the electrode [8]. In such a case, the actual potential
difference at the electrode | electrolyte interface is not uniform,
and this is due to the different degrees of the contribution of ionic
and/or electronic resistance depending on the position.

A TML model is usually represented using a drawing of a
discretized ladder-like circuit (e.g., Fig. 1). However, if the material
is macroscopically uniform and the values of the component
elements (Ri, Re, Cdl, and Rct in the example shown in Fig. 1) do not
depend on the position, the material is considered to be a
continuous medium, which can be understood as a ladder with an
infinite number of infinitesimal component elements. In such a
case, the impedance can be obtained analytically as a differential
equation problem, which is the main issue of this work. On the

other hand, if the values of the component elements depend on the
position (a typical case would be a porous electrode under DC
generation with varied charge-transfer resistance), it is difficult or
impossible to obtain an analytical solution. In such a case, wemust
consider a discretized, ladder-like circuit as in Fig.1, inwhich some
finite elements have different values [9]. It is desirable to assume a
circuit with as many ladder steps as possible, since in this case the
model approaches a continuous condition. The actual number of
ladder steps used for the calculation may depend on the balance
between the complication of the calculation and the desired
accuracy. For the calculation of a ladder-like circuit with finite
steps, a technique that involves the use of two theoretically
interchangeable circuits, known as a Y–D transform (Fig. 2) [10],
can be a useful tool. The application of this transform reduces the
number of steps by one (Fig. 3), and thus a recurrence formula can
bemade to determine the overall impedance, which is represented
by the final Y-circuit.

In the case of a macroscopically uniform material, although
mathematical solutions for uniform and one-dimensional TML
models have been developed and are widely used [1–8,11–17],
their boundary conditions are generally simple, and the solutions
are neither generalized nor comprehensive. In actual devices,
boundary conditions of porous electrodes are often not ideal. For
example, in the positive electrode of a lithium-ion battery, there is
some electronic resistance (contact resistance) between the
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substrate sheet and active material layer [18], and there is a
double-layer capacitance between the substrate and electrolyte.
And for another example, in the catalyst layer of a polymer
electrolyte fuel cell, especially in a case of using different kinds of
polymer for the membrane and ionomer in the catalyst layer, ionic
resistance between the membrane | ionomer interface (a kind of
contact resistance) might not be negligible [19,20], and simulta-
neously, faradaic impedance at the electrode | membrane interface
at the outermost of the catalyst layer might be different from that
at the catalyst | ionomer interface in the catalyst layer. In such
cases, a simple solution seen in literature can not be directly used
to analyze the impedance results. This work presents several
mathematical solutions with generalized boundary conditions for
use with as many problems as possible. Furthermore, since the
obtained solutions are quite complicated, many simplified
variations depending on the boundary conditions are also
presented for use by researchers as tools.

2. Theory

2.1. Differential equations and general solutions

The general solutions of a TML model are derived as described
in the literature [16], and as briefly explained below.

The model consists of an “upper line” and a “bottom line”, as
shown in Fig. 4. For electrochemical systems, these represent the
ionic current and electronic current, respectively. The current and
potential are governed by two differential equations:
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where C1 and C2 are integral constants, which depend on the
boundary conditions.

2.2. Types of connection to an external circuit

Fig. 5(a)–(c) shows three possible connections to an external
circuit that can be by selecting two of the four terminals of a TML
model. Here, we refer to these connections as “Z-type”, “T-type”,
and “E-type”, respectively. Although in this report we mainly
discuss these three types and their variations, a more general type,
the “universal-type” shown in Fig. 5(d), is also discussed. The
universal-type is equivalent to Z-typewhen ZV and ZY are zero, and
to T-type when ZV and ZX are zero. In the models shown in Fig. 5,
additional elements (ZP, ZQ, ZV� ZY) are introduced to cope with
any possible boundary conditions. These aremacroscopic elements
with [V] dimension, put out of the arrays of infinitesimal elements.
To avoid confusion, in the following figures, an array of
infinitesimal elements is represented by a gray area, and the
values of the component elements are represented by lowercase
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Fig. 1. Typical circuit with a ladder-like structure, where Ri, x,Re, x, Cdl, x, and Rct, x represent the ionic resistance, electronic resistance, double-layer capacitance, and charge-
transfer resistance at each position, respectively.
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Fig. 2. Y–D transform. (a) A D-circuit and (b) a Y-circuit are equivalent when ZJ = ZQ�ZR/(ZP�ZQ�ZR), ZK=ZR�ZP/(ZP�ZQ�ZR), and ZL=ZP�ZQ/(ZP�ZQ�ZR).

314 Z. Siroma et al. / Electrochimica Acta 160 (2015) 313–322



Download English Version:

https://daneshyari.com/en/article/184420

Download Persian Version:

https://daneshyari.com/article/184420

Daneshyari.com

https://daneshyari.com/en/article/184420
https://daneshyari.com/article/184420
https://daneshyari.com

