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A B S T R A C T

A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation
Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension
procedure the FT is performed over the range from -1� lnv� +1. The integration procedure is analytic
in the end regions, otherwise a quadratic interpolation is used. For the necessary windowing of the first
FT result, a special Tanh window function is used, which shows better results than the well-known Hann
window function. An alternative approach, based on a complex nonlinear least squares (CNLS) fit of a
linear sequence of (RQ)’s, provides the DFRT directly, but often significantly deviating from the FT-DFRT.
With several examples the usefulness of a DFRT in impedance analysis is tested. The main conclusion is
that the visibility in the DFRT of separate dispersive contributions strongly depends on the associated
resistance and thewidth of the distribution. ‘Near equal strength’ dispersive contributions showup in the
DFRT, where the area under the DFRT-peak represents the ‘strength’ or resistance. But small peaks with a
large FWHM are lost, although these can easily be identified in a CNLS-fit.
A comparison between the finite lengthWarburg (FLW) and the almost identical Gerischer impedance

shows a clear difference in the DFRT. Indications are found that the characteristic Gerischer DFRT might
be distinguishable in real measurement DFRT's.
In cooperation with an external group a brief test with an adaptive genetic evolution method showed

promising results for a direct definition of a DFRT. In this process the reconstructed impedance is
matched to the actual measurement.

ã 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical Impedance Spectroscopy (EIS) has come a long
way since its introduction in wet-electrochemical research by
Sluyters and Sluyters-Rehbach in the sixties of the last century
[1,2]. In the seventies it was recognized by the solid state research
community as an important tool for studying ionic conductivity
and electrode effects. It proved to be far superior to the, then
standard, practice of single frequency measurements. In that time
it moved from manual graphical analysis of simple systems to
computer aided analysis for progressively more complex systems.
Notably Macdonald [3,4], Boukamp [5,6] and others [7,8] have
contributed to this rapid expansion with the development of
complex nonlinear least squares (CNLS) analysis programs.

A recent overview of the status of impedance data analysis,
based on the concept of ‘Equivalent Circuits’ (abbreviated ‘EqC’),
has been presented in ref. [9]. New directions that did not involve
electrical analogs were also receiving some attention [10], but

most publications relied on an equivalent circuit interpretation
which was based on a limited set of direct electrical relations
(R, C, L) and more complex transfer functions derived from the
Laplace transform of (bounded) diffusion equations (Warburg
types [11–13] and Gerischer [14,15] or chemical impedance [16]) as
well as empirical relations, e.g. the constant phase element, or CPE
[17], and the Havriliak-Negami response function [18]. Since then
several books on impedance spectroscopy have become available,
notably by Barsoukov and Macdonald [19], Orazem and Tribollet
[20] and Lvovich [21]. The most recent book by Lasia [22] presents
an excellent introduction into EIS, its mathematics and data
analysis.

In solid oxide fuel cell (SOFC) research EIS has played an
important role in characterizing ionic transport processes in
separate anode, cathode or electrolyte studies. Its application to
complete cells, however, has created significant challenges as it
becomes difficult to breakdown the frequency dispersion of the
impedance in the separate anode and cathode processes. This is
caused by closely spaced time constants for the various electro-
chemical processes in both electrodes.
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In this area of research the definition of a distribution function
of relaxation times (DFRT) has been found to be useful for
analyzing the measured impedance response. This DFRT, i.e. Rp�G
(t), is found from the inversion of the following well-known
equation:

ZðviÞ ¼ R1 þ Rpol

Z 1

0

gðtÞ
1þ jvit

dt

¼ R1 þ Rpol

Z 1

�1

GðtÞ
1þ jvit

dlnt (1)

with: GðtÞ ¼ t � gðtÞ and:
R1
�1 GðtÞdlnt ¼ 1. R1 is the high

frequency cut-off resistance and Rpol is the polarization resistance,
Rpol =Rdc�R1, with Rdc the impedance value for v!0. Solving
Eq. (1) for G(t) is known as an ill-posed inverse problem. Various
methods have been devised to obtain a useful representation of G
(t). In a recent publication [23] the research group of Prof. Ivers-
Tiffée presented a Fourier transform method which derived the G
(t)-DFRT from the imaginary part of the impedance. This method
has been taken as the basis for this study.

Hörlin has proposed and demonstrated the usefulness of the
maximum entropy method [24,25] for solving Eq. (1). Apparently
this method has received very little attention in the solid state
community. Another mathematical procedure is known as the
‘Tikhonov regularization’ [26]. Both methods require adjustment
of the procedure with a ‘smoothing parameter’. Too little
smoothing yields unrealistic oscillations and superfluous
small peaks, too much results in a rather smooth curve,
suppressing the essential details. Saccoccio et al. [27] have
recently presented an automated optimization method for the
Tikhonov regularization.

But the Fourier de-convolution method also needs a separate,
adjustable windowing function, as will be demonstrated below.
Despite these complications, it seems that transforming impedance
measurements to DFRT’s is becoming a new trend in EIS-analysis. In
this publication we will take a closer look at the possibilities and
limitations of DFRT analysis. This will be based on four simple
questions, each illustrated with a specific impedance problem:

1. How accurately or uniquely does a DFRT describe the
impedance measurement?

2. Can aDFRT indicate the presence of special transfer functions,
e.g. the finite length Warburg (FLW, [11]) or the Gerischer [14].

3. Can it accurately predict the number of circuit parameters,
based on observed time constants?

4. Can it be a substitute analysis method for EIS-data for which
no simple EqC exists?

The first question will be illustrated with the simulated data
presented by Schichlein et al. [23]. Thiswill allow for a validation of
our Fourier de-convolution method, which is based on the
principles described in that publication. The difference in
appearance of DFRT's for comparable FLW and Gerischer functions
will be used for inspection of the second question.

An already published complex EIS analysis on PbZr0.53Ti0.47O3

(PZT, a mixed conducting piezoelectric Perovskite [28,29]) is used
to investigate the third question. Temperature and pO2 dependent
measurements could be resolved with one equivalent circuit with
up to 12 independent parameters. But arriving at this EqCwas not a
trivial task, as detailed in ref. [29].

The final question is tested with the impedance of a
La0.6Sr0.4Co0.2Fe0.8O3-d cathode (LSCF). It was observed that the
sintering temperature of the screen-printed cathode had a strong
effect on the area specific resistance (ASR) [30]. A sintering
temperature of 1200 �C resulted in an optimal ASR, while after
sintering at 1300 �C, a significantly larger ASR was obtained. The
electrode microstructure showed a large number of closed pores
with a distribution in pore size. These electrode impedances could
not be resolved with a simple EqC; hence the question ‘what can

we learn from the DFRT’? In this case the analysis was also carried
out by an adaptive genetic evolution algorithmmethod developed
by the group of Tsur [31,32].

Actually measured EIS data have been validated with a
Kramers-Kronig test [33]. The results are presented in a so-called
residuals graph, a plot of relative differences between the real
values and the imaginary values of the data and KK-transform
versus log(f), with v =2pf:

Dre við Þ ¼ Zdat;re við Þ � ZKK;re við Þ
jZdat við Þj ;Dim við Þ

¼ Zdat;im við Þ � ZKK;im við Þ
jZdat við Þj (2)

An important check of the validity of a DFRT is its conversion to
the impedance representation and comparing it with the
measured or originally simulated data in such a residuals graph.
Another quality check for fitted data is the pseudox2-value (pseudo,
as x2 has not been normalized for the parent distribution of
variances). For a CNLS-fit this has been defined as [5]:

x2
CNLS ¼

1
N �M � 1

�
X
N

Zdat;reðviÞ � Zmod;re við Þ� �2 þ Zdat;imðviÞ � Zmod;im við Þ� �2
jZmodðviÞj2

(3)

Where N is the number of data sets and M the number of
adjustable parameters. Zmod(v) represents the model function
derived from the EqC. For the Kramers-Kronig test a similar pseudo
x2 has been defined [33]:

x2
KK ¼ 1

N

X
N

Zdat;reðviÞ � ZKK;re við Þ� �2 þ Zdat;imðviÞ � ZKK;im við Þ� �2
jZdatðviÞj2

(4)

An optimal CNLS-fit has been obtained when the x2
CNLS -value is

close to x2
KK , i.e. the residuals graph shows mostly the statistical

noise. A low value of �10�6 generally indicates a very good fit,
although for some data sets x2-values down to 10�8 have been
observed. For the comparison of the impedance reconstructed
from the DFRT with the original data a x2

diff is defined. Its
definition is analogue to Eq. (4), with ZKK(v) replaced by the
reconstructed impedance data.

Although the main aim of this contribution is to investigate the
possibilities and limits of the Fourier transform DFRT, an
alternative method based on a CNLS-fit with a linear series of
(RQ) circuitswill be used for comparison.Q represents the constant
phase element (or CPE) with ZQ(v) =YQ(v)�1= [Y0(jv)n]�1. Here the
circuit description code, as developed by the author, is used [5,9].
The impedance is then fitted to an optimum number of (RQ)’s and
(RC)’s so that the residuals graph shows more or less the noise in
the data set. Each (RQ) circuit can be directly transformed to a DFRT
according to [34,35]:

R � GðtÞðRQÞ ¼
R
2p

� sin ð1� nÞpð Þ
cosh nlnðt=t0Þð Þ � cos ð1� nÞpð Þ (5)

with: t0 ¼ v�1
0 ¼

ffiffiffiffiffiffiffiffiffi
RY0

n
p

. In the case of a pure capacitance, i.e.
n =1 for a (RC)-circuit, Eq. (5) transforms into a d-function. It will
be shown, however, that this d-function can be approximated by a
narrow Gaussian distribution:

R � GðtÞGauss ¼
R

W
ffiffiffiffi
p

p e�
lnðt=t0 Þ

W

� �2

(6)
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