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In Lorentzian gauge/gravity duality, a proper understanding of initial conditions is essential. I discuss the
precise relation between purely ingoing conditions at the horizon for bulk fields and retarded boundary correlation
functions, as well as the generalization to higher-point functions. Some open questions can be answered only within

the recently developed framework of [1,2].

Introduction

The gauge/gravity duality [3] is by now firmly
rooted in a well-developed dictionary between the
gauge theory and the gravity side. Within the
supergravity approximation, most entries in the
dictionary can be conveniently summarized in the
familiar formula

Zqft [J] = exp ( - Ssugra[*]]) ) (1)

where J represents both QFT sources as well as
boundary conditions for the supergravity fields.

However, (1) is really valid only in imaginary
time. The real-time dictionary is necessarily more
involved than the continuation of (1), since one
has to specify both initial and final QFT states
as well as initial and final supergravity data. His-
torically, this complication was overcome by im-
posing initial and final boundary conditions that
were motivated purely within supergravity. For
example, the authors of [4] used a black hole ar-
gument to state that retarded real-time thermal
correlation functions can be obtained by using
‘purely ingoing’ boundary conditions for the su-
pergravity fields at a bulk horizon. Subsequently,
in [5] these purely ingoing conditions were tied to
‘natural’ boundary conditions in the same way as
retarded and time-ordered correlation functions
are related in field theory. The prescription of
[4,5] turned out to be very successful and is by
now widely used.

However, in my opinion a complete first-
principles derivation of this prescription has
been missing and some questions remained unan-
swered. For example, in general one expects
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Figure 1. A real-time thermal contour in the com-
plex time plane. The circles should be identified.
The two Lorentzian segments are labelled 1 and 2
on which we have sources J; and Js, respectively.

the field theory state (or rather ensemble) to de-
termine all the initial conditions, including any
boundary conditions for fluctuations at the hori-
zon. Why does this not seem to be the case here?
Could we not change the state somewhat and
obtain different (‘non-natural’) boundary condi-
tions? And if the prescription is related to an
on-shell action like (1) as suggested in [5], why
can we ignore surface contributions from the ini-
tial and final boundaries to this action?

In [1,2], see also [6], a real-time gauge/gravity
dictionary was developed from first principles.
The aim of this note is to show that this new
dictionary reproduces almost precisely the recipe
of [4] and answers all the questions raised in the
previous paragraph as well.

A complete dictionary

Consider a field theory at finite temperature
T = 1/B. The dynamics of the corresponding
gas or plasma is described by real-time thermal
correlation functions. These correlators can be
obtained [7] from a path integral along a contour
in the complex time plane as sketched in Fig. 1,
with sources J; and Jy (for an operator O) on
the two horizontal segments of the contour. We
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Figure 2. The Euclidean segment of the contour is
filled in with a disk; the two Lorentzian segments
with two copies of a part of an eternal black hole
spacetime (shaded).

will in particular compute the retarded correlator
iAg(z, ') = 0(t —t'){([O(x), O(«")]), which is ob-
tained by setting J; = J» = J and expanding the
one-point function of O to first order in J:

51(0()) = /dda:’AR(x,x’)J(x’) T

We will use this equation for Ag below.

Let us now turn to the real-time gauge/gravity
prescription of [1,2]. It instructs us to fill in the
entire field theory contour with bulk spacetimes.
Consider first the vertical segment in Fig. 1 and
suppose that it can be filled in with a Euclidean
black hole solution. Topologically, this fills the
imaginary time circle with a disk (plus some
transverse space which is unimportant here). To
add in the Lorentzian segments, we slice open the
FEuclidean black hole solution by making a cut in
the disk, say at Euclidean time 7 = 0 up to the
center of the disk. To the two cut surfaces we glue
two copies of a segment of an eternal Lorentzian
black hole solution which we will call M7 and M.
We finally glue M7 and M, together along some
late-time surface. The total space is sketched in
Fig. 2.1

As usual, the sources Ji,Jo on the boundary
contour now correspond to boundary data for the
supergravity fields and switching them on causes
perturbations on the background of Fig. 2. These
I This space differs from that of [2] only by a downward

deformation of the late-time hypersurface. Such a defor-
mation is unimportant for the boundary correlators.

perturbations propagate from one segment to the
other via the matching conditions of [2] that es-
sentially guarantee C' continuity of the fields
across the gluing. (The precise conditions can
be derived from a saddle-point approximation.)

Ingoing boundary conditions

As an example, let us consider a free bulk
scalar field ® with mass m satisfying the bulk
Klein-Gordon equation with general boundary
data Ji, Jo. For brevity, we will only write down
the explicit solution on the segment Mj.

We assume that we can use separation of vari-
ables in ¢, the angular (or other transverse) coor-
dinates ¢ and the radial coordinate r. One then
finds four mode solutions,

e Y (B)pra (w, I, m? 1),

with Y} some basis of harmonic functions on the
transverse space. These modes are either purely
ingoing (¢—_4 ) or purely outgoing (¢4 ); the sec-
ond =+ indicates the different possible analytic
continuations across the horizons which we do not
need here. Any solution ® can be expanded in
these modes with certain coefficients a4 4:

o, @r) =Y /dw e Y () (@t 4 4
I

tay-¢—t+ta oy ta_¢__). (3)

Now consider the solution corresponding to a
delta-function source at (¢,) = 0 on 9,M; and
denote the corresponding solution on M; as Afjy).
If the modes are appropriately normalized, then
Af1q) has the form (3) with

a[11]++ = (]_ — eﬁw)il a[11]+_ =0

a[n]__,_ =0 a[n}__ = (1 - eiﬁw)il .

These aj1jj++ are uniquely determined by de-
manding normalizability along the radial bound-
ary of the entire manifold of Fig. 2 (except of
course at the origin of 9, M), combined with the
matching conditions between the segments. This
solution precisely satisfies the ‘natural’ boundary
conditions of [5].

Let us now move the delta-function source to
the origin of 0,.Ms. The perturbation propagates
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