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a b s t r a c t

We theoretically study electrostatic properties of electric double layer using a generalized Poisson-
Boltzmann approach taking into account the orientational ordering of water dipoles and the excluded
volume effect of water molecules as well as those of positive and negative ions with different sizes in
electrolyte solution.

Our approach enables one to predict that the number densities of water molecules, counterions and
coions and the permittivity of electrolyte solution close to a charged surface, asymmetrically vary depend-
ing on both of sign and magnitude of the surface charge density and the volume of counterion. We treat
several phenomena in more detail. Firstly, an increase in the volume of counterions and an increase in
the surface charge density can cause the position of the minimum number density of water molecules to
be farther from the charged surface. Secondly, width of the range of voltage in which the properties at the
charged surface symmetrically vary decreases with increasing bulk salt concentration. In addition, we
show that the excluded volume effect of water molecules and the orientational ordering of water dipoles
can lead to early onset and lowering of the maximum of electric capacitance according to surface voltage.
Our approach and results can be applied to describing electrostatic properties of biological membranes
and electric double layer capacitor for which excluded volume effects of water molecules and ions with
different sizes may be important.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of electric double layer was first presented by Her-
man von Helmholtz [1] before more than one century. Since then
many researchers have developed realistic theories of electric dou-
ble layer to solve various problems of biology, medicine, colloid
science and electrochemistry such as the binding of charged lig-
ands to the membrane surface, the interactions of vesicles with
the membrane, osteoblast attachment to biomaterials, fundamen-
tal nucleic acid processes, RNA folding, and differential capacitance
of electric double layer capacitor [2–5].

To correctly represent electrostatic properties of electric double
layer, a number of computational approaches such as Monte Carlo
method and numerical solutions of integral equations [6–9] were
introduced, but they involve more complicated calculations than
for the Poisson-Boltzmann (PB) approach.

However, the original PB approach proposed by Gouy and
Chapmann [10,11] doesn’t consider the finite volumes of ions in
electrolyte and it is known that the approach heavily overestimates

the ionic concentrations close to charged surfaces in electrolyte.
As an early attempt to eliminate such a shortcoming of the orig-
inal PB approach, Stern [12] considered the finite size effect of
ions by combining the Helmholtz model with the Gouy-Chapmann
model. To include volume effects of ions directly into the PB
approach, Bikerman [13] empirically modified Boltzmann distribu-
tion by correcting ion concentrations for the volume excluded by
all ions.

In [14–19], the authors considered finite volumes of ions and
water molecules within lattice statistical mechanics approach. The
assumption of the same size of ions and water molecules in elec-
trolyte has been common to their work. Although this assumption
does properly work in many situations, ionic transport across nar-
row channels and ionic adsorption in objects of subnanometer size
cannot be described by means of the assumption. For example,
when the size of a negative ion is larger than one of a positive ion,
negative ionic transport across narrow channels of biological mem-
branes or pores of electrode of electric double layer capacitor will
hardly proceed.
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Modified PB approaches using lattice statistics [20–22] were
developed for considering the difference in sizes of positive and
negative ions. For this purpose, in [20], a lattice in which one cell
can contain several ions was used. In [21], the authors semiempiri-
cally extended a modified PB equation to the case of an asymmetric
salt. Recently, in [22], the authors assumed that the lattice cell size
was an integer number of times smaller than a linear dimension of
ion.

In fact, the Booth model [23,24] is well-known for generalization
of the Onsager-Kirkwood-Fröhlich permittivity model [25,26] in
the saturation regime of orientational ordering of water dipoles,
but the model doesn’t consider the sizes of both ions and water
molecules in electrolyte solution.

In [27–30,32], the authors took into account the excluded vol-
ume effect of water molecules and the orientational ordering of
water dipoles together with the excluded volume effect of ions
in the modification of the PB approach using lattice statistics. In
particular, the authors described that the permittivity of an elec-
trolyte solution near a strongly charged surface may be heavily
decreased by orientational ordering of water dipoles and depletion
of water molecules [28–30]. In their approach, each particle occu-
pies one cell of lattice based on the assumption that the ions and
water molecules have the same excluded volume, which allowed
the PB equations to have analytical and intuitive solutions. How-
ever, in cases where effects of difference in excluded volumes of
water molecules and ions may be important, for example, where
the electric capacitance is asymmetric due to the difference in sizes
of positive and negative ions [22], a more general approach taking
into account the effects is needed.

In this paper we will incorporate not only the asymmetric size
effect of ions in electrolyte but also both the orientational ordering
of water dipoles and excluded volume effect of water molecules
into the Poisson-Boltzmann approach. In a word, our approach
generalizes that of [28] to include non-uniform ionic sizes. We
introduce a lattice statistics where more than one cell can be occu-
pied by each ion as in [22] and also by each water molecule for
considering effects of different excluded volumes of ions and water
molecules. We show that electrostatic properties of electrolyte
solution close to a charged surface aren’t symmetric in positive
and negative surface charge densities of the charged surface. We
study effects of the volume of counterion and sign and magnitude
of the surface voltage on electrostatic properties of the electrolyte
solution. Finally, an early onset and lowering of the maximum of
electric capacitance are predicted.

2. The generalized Poisson-Boltzmann approach

We consider an electrolyte solution composed of multivalent
ions and water molecules in contact with a charged planar surface,
where a positive ion has charge +ze0 and a negative ion has charge
−ze0. The total free energy F can be written in terms of the local
electrostatic potential  (r) and the number densities of ions c+(r),
c−(r) and water molecules cw(r) = 〈�(ω, r)〉ω .

F =
∫
dr

(
−ε0εE2

2
+ e0z (c+ − c−) + 〈�(ω)�p0E cosω〉ω −�+c+

−�−c− − 〈�w(ω)�(ω)〉ω − Ts
)
, (1)

where 〈f(ω)〉ω =
∫

f(ω)2� sin(ω)dω in which ω is the angle between
the vector p and the normal to the charged surface. Here p is
the dipole moment of water molecules and E is the electric field
strength. The first term is the self energy of the electrostatic field,
where ε equals n2 and n = 1.33 is the refractive index of water. The
next term corresponds to the electrostatic energy of the ions in the

electrolyte solution, where e0 is the elementary charge. The third
one represents the electrostatic energy of water dipoles [28], where
� = (2 + n2)/2, p0 = |p| and E = |E|. The next three terms are responsi-
ble for coupling the system to a bulk reservoir, where �+,− are the
chemical potentials of positive ions and negative ions and�w(ω) is
the chemical potential of water dipoles with orientational angleω.
T is the temperature and s is the entropy density.

Consider a unit volume of the electrolyte solution. The entropy
density is the logarithm of the number of translational and ori-
entational arrangements of non-interacting c+ positive ions, c−
negative ions and �(ωi)�	i(i = 1 · · · N) water molecules, where
�	i = 2� sin(ωi)�ω is an element of a solid angle and �ω =�/N.
The positive ion, negative ion and water molecule occupy volumes
of V+, V− and Vw , respectively.

Within a lattice statistics approach each particle in the solution
occupies more than one cell of a lattice as in [22]. Considering trans-
lational arrangements of ions and orientational ordering of water
dipoles, the number of arrangements can be calculated as follows.
As in [22], we first place c+ positive ions of the volume V+ and then
c− negative ones of the volume V− in the lattice. Finally, taking
into account the orientational ordering of water dipoles, we put in
�(ωi)(i = 0, 1, . . .) water molecules of the volume Vw in the lattice.
The number of arrangements W is written as

W = cs(cs − 1 · v+)· · ·(cs − (c+ − 1)v+)
c+!

× (cs − c+v±)· · ·(cs − c+v± − (c− − 1)v−)
c−!

× (cs − c+v+ − c−v−)· · ·vw

limN→∞

N∏
i=1

�(ωi)�	i!

, (2)

where v+,−,w = V+,−,w/a3 are the numbers of cells that the positive
ion, negative ion and water molecule occupy, respectively. cs = 1/a3

is the number of cells per unit volume and a denotes the linear
dimension of one cell.

From the standpoint of physics the entropy density should
be symmetric in + and −. For this purpose, we assume that
the positive(negative) ion excludes v± = (v+ + v−)/2 for the neg-
ative(positive) ion.

Expanding the logarithms of factorials using Stirlings formula,
we obtain the expression for the entropy density, s = kB ln W,

s

kB
= lnW = −c+ ln a3 − c− ln a3 −

(
1 − c+V+ − c−V−

Vw

)
ln a3

− c+ ln c+ − c− ln c− −
(

1
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− c+
)

ln (1 − c+V+)

+
(

1
V−

− c+V±
V−

)

× ln (1 − c+V±) −
(

1
V−

− c+V±
V−

− c−
)

× ln (1 − c+V± − c−V−) −
(

1
Vw

− c+V+
Vw

− c−V−
Vw

)

× ln (1 − c+V+ − c−V−) − lim
N→∞

N∑
i=1

[�(ωi)�	i ln�	i

+�(ωi)�	i ln�(ωi) − �(ωi)�	i], (3)



Download English Version:

https://daneshyari.com/en/article/184788

Download Persian Version:

https://daneshyari.com/article/184788

Daneshyari.com

https://daneshyari.com/en/article/184788
https://daneshyari.com/article/184788
https://daneshyari.com

