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We report about recent progress in computing four-loop massive correlators. The expansion of these correlators

in the external momentum leads to vacuum integrals. The calculation of these vacuum integrals can be used to

determine Taylor expansion coefficients of the vacuum polarization function and decoupling functions in pertur-

bative Quantum chromodynamics. New results at four-loop order for the lowest Taylor expansion coefficient of

the vacuum polarization function and for the decoupling relation are presented.

1. Introduction

Two-point correlators have been studied in
great detail in the framework of perturbative
quantum field theory. Due to simple kinematics
(only one external momentum) even multi-loop
calculations can be performed. The results for all
physically interesting diagonal and non-diagonal
correlators and including full quark mass depen-
dence are available up to O (

α2
s

)
[1–3].

At four-loop order the two-point correlators can
be considered in two limits. In the high en-
ergy limit massless propagators need to be cal-
culated and in the low energy limit vacuum dia-
grams (tadpole integrals without dependence on
the external momentum) arise. The evaluation of
these massive tadpoles in three-loop approxima-
tion has been pioneered in ref. [4] and automated
in ref. [5].
Similar to the three-loop case, the analytical eval-
uation of four-loop tadpole integrals is based
on the traditional Integration-By-Parts (IBP)
method. In contrast to the three-loop case the
manual construction of algorithms to reduce ar-
bitrary diagrams to a small set of master integrals
is replaced by Laporta’s algorithm [6, 7]. In this
context the IBP identities are generated with nu-
merical values for the powers of the propagators
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and the irreducible scalar products. In the next
step, the resulting system of linear equations is
then solved in the next step by expressing system-
atically complicated integrals in terms of simpler
ones. The resulting solutions are then substituted
into all the other equations.
This reduction has been implemented in an au-
tomated FORM3 [8, 9] based program in which
partially ideas described in ref. [7, 10, 11] have
been implemented. The rational functions in the
space-time dimension d, which arise in this proce-
dure, are simplified with the program FERMAT [12].
The automated exploitation of all symmetries of
the diagrams by reshuffling the powers of the
propagators of a given topology in a unique way
strongly reduces the number of equations which
need to be solved.

In general, the tadpole diagrams encountered
during our calculation contain both massive and
massless lines. In contrast, the computation
of the four-loop β-functions can be reduced to
the evaluation of four-loop tadpoles composed of
completely massive propagators. These special
cases have been considered in [11, 13, 14].

The outline of this paper is as follows. In sec-
tion 2 we discuss the calculation of the lowest
expansion coefficient of the vacuum polarization
function and present the results at four-loop or-
der using methods as described above. In section
3 we present new results for the decoupling rela-
tion at four-loop order in perturbative QCD. Our
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conclusions are presented in section 4.

2. Vacuum polarization function

The vacuum polarization tensor Πμν(q) is de-
fined as

Πμν(q) = i

∫
dx eiqx〈0|T jμ(x)jν(0)|0〉 , (1)

where qμ is the external momentum and jμ is
the electromagnetic current of a heavy quark with
mass mh. The tensor Πμν(q) can be expressed by
a scalar function, the vacuum polarization func-
tion Π(q2) through

Πμν(q) =
(
qμ qν − q2 gμν

)
Π(q2)+qμ qν ΠL(q2).(2)

The longitudinal part ΠL(q2) vanishes due to the
Ward identity. The polarization function Π(q2) is
related to the experimentally measurable R-ratio
R(s) through the dispersion relation:

Π(q2) = Π(q2 = 0) +
q2

12 π2

∫
ds

R(s)

s (s − q2)
. (3)

Performing the n-th derivative of eq. (3) with re-
spect to q2 at q2 = 0 one obtains the moments
Mexp

n , which can be determined experimentally:

Mexp
n =

∫
ds

R(s)

sn+1
=

12 π2

n!

(
d

dq2

)n

Π(q2)

∣∣∣∣
q2=0

.

The derivatives of the polarization function on
the rhs are related to the Taylor expansion coef-
ficients Cn:

Π(q2) =
3 Q2

q

16 π2

∑
n≥0

Cn zn, (4)

(z = q2/(4 m2
h)) which can be calculated in per-

turbative QCD. The first and higher derivatives
are important for a precise determination of the
charm- and bottom-quark mass (see e.g. [15]).
But also the lowest expansion coefficient C0 has
an interesting physical meaning: it relates the
coupling of electromagnetic interaction in differ-
ent renormalization schemes. In the case of QED-
on-shell-renormalization the residue of the pho-
ton propagator is one and the electrical charge
e coincides with the classical limit. If one per-
forms renormalization in the MS-scheme one ob-
tains a relation between the coupling constant of

the electromagnetic interaction αem = e2/(4 π) in
QED-on-shell-renormalization and the coupling
constant αem = ē2/(4 π) in the MS-scheme:

αem =
αem

1 + e2 Π(q2 = 0)
. (5)

For massive quarks, interacting through gluons,
Π(q2 = 0) has been evaluated in ref. [1]. At three-
loop order in perturbative QCD this relation has
already been determined in ref. [1]. For the QED
case the corresponding result was calculated in
ref. [4].

The first Taylor coefficient C0 has been calcu-
lated using the methods described in section 1.
All tadpole diagrams were expressed through the
set of 13 master integrals shown in figure 1.
These master integrals have been calculated in
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Figure 1. Master integrals. The solid lines de-
note massive lines, whereas the dashed lines de-
note massless lines.

refs. [16–18]. Inserting the master integrals into
the lowest Taylor coefficient of the polarization
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