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In this contribution we review the status of the decoupling coefficients for as both in the Standard Model
(SM) and its minimal supersymmetric extension, the so-called MSSM. We stress the importance of a consistent
treatment, in particular within the framework of the MSSM.

1. Motivation

The strong coupling constant, as, constitutes
a fundamental parameter in the Standard Model
(SM) and thus its precise numerical value is very
important for many physical predictions. An in-
teresting property of ay is its scale dependence,
in particular its strong rise for low and its small
value for high energies which make perturbative
calculations within the framework of QCD pos-
sible. The scale dependence is governed by the
B function. However, in order to relate ay at
two different scales it is also necessary to incor-
porate threshold effects of heavy quarks which is
achieved with the help of the so-called matching
or decoupling relations. Thus, when specifying «;
it is necessary to indicate next to the scale also
the number of active flavours.

A consistent treatment of the running and
decoupling procedure requires the use of (N —
1)-loop decoupling formulae together with N-
loop expressions for the [ function. As far as
QCD is concerned, recently the four-loop match-
ing relations have been computed by two inde-
pendent groups [1,2]. Formally this would re-
quire the knowledge of the five-loop § function,
however, currently only the four-loop terms are
known [3,4].

The situation is different in the context of su-
persymmetry. In the limit where the number of
active fermions and sfermions is equal the § func-
tion up to three loops is available since already
quite some time [5], however, until recently only
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the one-loop matching conditions have been avail-
able in the literature. This gap has been closed
in Ref. [6] where two-loop decoupling relations in
the framework of the MSSM have been studied.

In this contribution we provide a brief overview
on the current status, both for QCD, which is
treated in Section 2, and SUSY-QCD, which can
be found in Section 3.

2. Decoupling in QCD

A typical problem where the question of de-
coupling plays a crucial role occurs when two val-
ues of ay, defined for different number of active
flavours, shall be related to each other. E.g., con-

sider the case where a!”) (M) shall be computed

from the knowledge of alt (M;). In this exam-
ple the decoupling constant has to provide a re-
lation between o'’ (1p) and ol (up) where pyp is
the matching scale where the bottom quark is de-
coupled.

In a more general way we define the decoupling

constant via
@ = Gl 0

where g% = /47?0 is the bare strong coupling. In
close analogy to the renormalization procedure it
is possible to relate Cg to the decoupling constants
of the ghost-gluon vertex, the gluon propagator
and the ghost propagator:
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It is convenient to define the (’s in a first step
for bare quantities since then one-to-one relations
between the N-loop contributions to the decou-
pling constants and the N-loop vacuum integrals
can be established [7]. Sample diagrams up to
four-loop order can be found in Fig. 1(a), (b) and
(c). The technology up to three-loop order is well
documented in the literature and publicly avail-
able programs exist (see, e.g., Refs. [8,9]). The
development of the four-loop technology is quite
new. The results of Ref. [1] are based on a pro-
gram [10] where the so-called Laporta algorithm
has been implemented in FORM [11].

Once the bare four-loop result for the decou-
pling relation is available it is straightforward to
obtain the renormalized expression with the help
of the usual renormalization constants (see, e.g.,
Ref. [12])

Z
Gg = Z—ZCS. (3)

The analytical result for (; can be found in
Ref. [1] where only one constant, which was
denoted by X, has not been known in ana-
lytical form but with high numerical precision.
Meanwhile also this constant is available analyt-
ically [13] with the result
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~ 1.8088795462083347414 ..., (4)

where a5 = Li5(1/2) and (5 ~ 1.036927755.. ..
In order to study the numerical impact of our
result we consider the evaluation of al” (Mz)
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Figure 1. Sample diagrams for the gluon (a) and
ghost (b) propagator and the ghost-gluon vertex
(c). In (d) the lowest-order diagram is shown me-
diating the Higgs-gluon coupling in the SM and
(e) shows an example for a five-loop diagram con-
tributing to the coefficient function Cf.

from ag4)(MT), i.e. we apply our formalism to

the crossing of the bottom quark threshold. In
general one assumes that the value of the scale
1y, where the matching has to be performed, is
of order m;,. However, it is not determined by
theory. Thus this uncertainty contributes signif-
icantly to the error of physical predictions. On
general grounds one expects that while including
higher order perturbative corrections the relation
between ag4) (M) and ag5)(M 7) becomes insen-
sitive to the choice of the matching scale which
we want to demonstrate in the following up to the
five-loop order.

Starting from a!” (M) = 0.36 we compute in a

first step o® (up) using N-loop accuracy. After-

wards a'”) (1p) is obtained where for consistency
the (N — 1)-loop matching equations have to be
used. Finally, we compute al® (M) using again
the N-loop in the 3 function.

In Fig. 2 the result for ! (Mz) as a functions
wy is displayed for the one- to five-loop analy-
sis. For illustration, u; is varied rather extremely,
by almost two orders of magnitude. While the
leading-order result exhibits a strong logarith-
mic behaviour, the analysis is gradually getting
more stable as we go to higher orders. The five-
loop curve is almost flat for u, > 1 GeV and
demonstrates an even more stable behaviour than
the four-loop analysis of Ref. [7]. It should be
noted that around pp ~ 1 GeV both the three-,
four- and five-loop curves show a strong variation
which can be interpreted as a sign for the break-
down of perturbation theory. Note that for this
analysis the unknown five-loop coeflicient of the
(B function is set to zero.

An interesting connection between the decou-
pling constant discussed so far, which constitutes
a fundamental quantity of QCD, and a building
block for the production and decay of a SM Higgs
boson is established by the all-order low-energy
theorem [7] given by
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Eq. (b) relates (, to the coefficient function
appearing in the effective Lagrangian of an
intermediate-mass Higgs boson to two, three and
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