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Abstract

Fourier transforms of GPDs describe the distribution of partons in the transverse plane. The 2nd moment of GPDs
has been identified by X.Ji with the angular momentum (orbital plus spin) carried by the quarks - a fundamental
result that is being widely utilized in the spin decomposition of a longitudinally polarized nucleon. However, we will
demonstrate that, despite the above results, the Fourier transform of the 2nd moment of GPDs does not describe the
distribution of angular momentum in the transverse plane for a longitudinally polarized target.
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1. Introduction

The 2-dimensional Fourier transform of the General-
ized Parton Distribution (GPD) H(x, 0, t) yields the dis-
tribution of partons in the transverse plane for an unpo-
larized target [1].

q(x, �b⊥) =
∫

d2�Δ⊥
(2π)2 H(x, 0,−�Δ2

⊥) e−i�b⊥·�Δ⊥ (1)

As a corollary, one finds that the distribution of charge
in the transverse plane is given by the 2-dimensional
Fourier transform of the Dirac form factor F1(t) [2].
These results are relativistically correct in contradistinc-
tion to the interpretation of the 3-dimensional Fourier
transform of form factors as charge distributions in 3-
dimensional space.

GPDs can also be used to determine the angular mo-
mentum carried by quarks of flavor q using the Ji-
relation [3]

Jq =
1
2

∫
dx x
[
Hq(x, ξ, 0) + Eq(x, ξ, 0)

]
, (2)

which requires GPDs extrapolated to momentum trans-
fer t = 0.In Ref.[4], for the chiral quark soliton model,a
relation between the 3-dimensional Fourier transform of

Jq(t) ≡ 1
2

∫
dx x
[
Hq(x, ξ, t) + Eq(x, ξ, t)

]
(3)

and the distribution of angular momentum in position
space was suggested. While Lorentz invariance is not
an issue for the model considered in Ref.[4], in general
the interpretation of the 3-dimensional Fourier trans-
form of a generalized form factor as a distribution in
3-dimensional space is inconsistent with Lorentz invari-
ance [1, 2]. However, since the interpretation of the
2-dimensional Fourier transform of generalized form
factors as distributions in the transverse plane (in the
infinite momentum frame) is relativistically correct, it
is frequently cited that the distribution of angular mo-
mentum in the transverse plane can be related to the 2-
dimensional Fourier transform of (3) (see e.g. [5]).

In this note, we wil thus investigate whether the 2-
dimensional Fourier transform of Jq(t) can be inter-
preted as the distribution of angular momentum in the
transverse plane. Using a scalar diquark model, we will
calculate the distribution of quark Orbital Angular Mo-
mentum (OAM) using two complementary approaches:
in the first approach, we take the 2-dimensional Fourier
transform of Jq(t) calculated in this model. From that
we subtract the spin-distribution in the transverse plane
evaluated from the same light-cone wave functions that
were used to calculate the GPDs. In the second ap-
proach we calculate the distribution of quark OAM as
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a function of the impact parameter also directly from
the same light-cone wave functions used in the first ap-
proach.

We selected the scalar diquark model for this study
not because we think it is a good approximation for
QCD, but to make a point of principle for which that fact
that it is straightforward to maintain Lorentz invariance
in this model is very important. Furthermore, since it
is not a gauge theory, no issues arise as to whether one
should include the vector potential in the definition of
OAM or in which gauge the calculation should be done,
i.e. there is no difference between Ji’s OAM (2) and that
of Jaffe and Manohar [6].

2. Distribution of Angular Momentum in the Trans-

verse Plane

Following Ref. [4], we define

J̃(�b⊥) ≡
∫

d2�Δ⊥
(2π)2 e−i�Δ⊥·�b⊥ Jq(−�Δ2

⊥), (4)

where

Jq(−�Δ2
⊥) ≡ 1

2

∫
dxx[Hq(x, ξ,−�Δ2

⊥) + Eq(x, ξ,−�Δ2
⊥)]

≡ 1
2

[Aq(−�Δ2
⊥) + Bq(−�Δ2

⊥)]. (5)

The main goal of this work is to investigate whether it is
justified to interpret J̃(�b⊥) as the distribution of angular
momentum in the transverse plane.

Calculating the relevant GPDs is straightforward us-
ing the light-cone wave functions [7] for the scalar di-
quark model

ψ↑
+ 1

2

(
x,�k⊥
)
=

(
M +

m
x

)
φ(x,�k2

⊥) (6)

ψ↑− 1
2
(x,�k⊥) = −k1 + ik2

x
φ(x,�k2

⊥)

ψ↓
+ 1

2
(x,�k⊥) =

k1 + ik2

x
φ(x,�k2

⊥),

ψ↓− 1
2
(x,�k⊥) = (M +

m
x

)φ(x,�k2
⊥)

with φ(x,�k2⊥) =
g/
√

1−x

M2− �k2⊥+m2

x − �k2⊥+λ2
1−x

. Here g is the

Yukawa coupling and M/m/λ are the masses of the
‘nucleon’/‘quark’/diquark respectively. Furthermore x
is the momentum fraction carried by the quark and
�k⊥ ≡ �k⊥e−�k⊥γ represents the relative⊥momentum. The
upper wave function index ↑ refers to the helicity of the
‘nucleon’ and the lower index to that of the quark.

For the generalized form factors needed to evaluate
(5) one finds [7]

Aq(−�Δ2
⊥) =

∫
dx xHq(x, 0,−�Δ2

⊥) (7)

where

Hq(x, 0,−�Δ2
⊥)=
∫

d2�k⊥
16π3

[
ψ↑ ∗
+ 1

2
(x,�k′⊥)ψ↑

+ 1
2
(x,�k⊥)

+ ψ↑ ∗− 1
2
(x,�k′⊥)ψ↑− 1

2
(x,�k⊥)

]
(8)

where �k′⊥ = �k⊥ + (1 − x)�Δ⊥ as well as

Bq(−�Δ2
⊥) =

∫
dx xE(x, 0,−�Δ2

⊥) (9)

Eq(x, 0,−�Δ2
⊥)=

−2M
Δ1 − iΔ2

∫
d2�k⊥
16π3

[
ψ↑ ∗
+ 1

2
(x,�k′⊥)ψ↓

+ 1
2
(x,�k⊥)

+ ψ↑ ∗− 1
2
(x,�k′⊥)ψ↓− 1

2
(x,�k⊥)

]
. (10)

From these GPDs one can determine the OAM as ob-
tained from GPDs through the Ji relation (2) as

Lq =
1
2

∫ 1

0
dx
[
xHq(x, 0, 0) + xE(x, 0, 0) − Δq(x)

]
, (11)

where

Δq(x) =
∫

d2�k⊥
16π3

[∣∣∣∣∣ψ↑+ 1
2
(x,�k⊥)

∣∣∣∣∣
2
−
∣∣∣∣∣ψ↑− 1

2
(x,�k⊥)

∣∣∣∣∣
2]
. (12)

Since some of the above �k⊥-integrals diverge, a man-
ifestly Lorentz invariant Pauli-Villars regularization
(subtraction with heavy scalar λ2 → Λ2) is always un-
derstood.

To evalulate relation (4), we simplify and rewrite (8)
and (10) as:

H(x, 0,−�Δ2
⊥) =

g2

16π3

∫
d2�k⊥

[∫ 1

0

dα(1 − x)(m + xM)2

[(�k⊥ + (1 − x)�Δ⊥ α)2 + F]2

+
1 − x

2(�k′
2
⊥ + u)

+
1 − x

2(�k2⊥ + u)

−
∫ 1

0
dα

(1 − x)(u + (1−x)2 �Δ2⊥
2 )

((�k⊥ + (1 − x)�Δ⊥ α)2 + F)2

]
(13)

where
u = x2 − 2x + 1 + xλ2 and
F = (1 − x)2�Δ2⊥ α(1 − α) + x2 − 2x + 1 + xλ2
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