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We investigate the running cosmological constant model with dark energy linearly proportional to the 
Hubble parameter, � = σ H + �0, in which the �CDM limit is recovered by taking σ = 0. We derive the 
linear perturbation equations of gravity under the Friedmann–Lemaïtre–Robertson–Walker cosmology, 
and show the power spectra of the CMB temperature and matter density distribution. By using the 
Markov chain Monte Carlo method, we fit the model to the current observational data and find that 
σ H0/�0 � 2.63 × 10−2 and 6.74 × 10−2 for �(t) coupled to matter and radiation-matter, respectively, 
along with constraints on other cosmological parameters.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The type-Ia supernova observations [1,2] have shown that our 
universe is undergoing a late-time accelerating expansion, which 
is caused by Dark Energy [3]. The simplest way to realize such 
a late-time accelerating mechanism is to introduce a cosmologi-
cal constant to the gravitational theory, such as that in the �CDM 
model. This model fits current cosmological observations very well, 
but there exist several difficulties, such as the “fine-tuning” [4,5]
and “coincidence” [6] problems.

In this work, we will concentrate on the latter problem [7], 
which has been extensively explored in the literature. One of 
the popular attempts is the running � model, in which the cos-
mological constant evolves in time and decays to matter in the 
evolution of the universe [8–20], so that the present energy den-
sities of dark energy and dark matter are of the same order of 
magnitude. Its observational applications have been investigated 
in Refs. [21–23]. In our study, we are interested in the specific 
model with � = σ H [24–29], which would originate from the the-
ory with the QCD vacuum condensation associated with the chiral 
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phase transition [30–34]. In this scenario, the cosmological con-
stant decays to matter (non-relativistic) and radiation (relativistic), 
leading to a large number of particles created in the cosmological 
evolution. Without loss of generality, we phenomenologically ex-
tend this model to include that � additionally couples to radiation 
with � = σ H + �0 [35–37], in which the �CDM limit can be re-
alized if σ = 0. In this scenario, when dark energy dominates the 
universe, the decay rate of � is reduced, and the late-time accel-
erating phase occurs, describing perfectly the evolution history of 
the universe. As a result, it is reasonable to go further to analyze 
the cosmological behavior of this model at the sub-horizon scale.

In this paper, we examine the matter power spectrum P (k)

and CMB temperature perturbations in the linear perturbation the-
ory of gravity. By using the Markov chain Monte Carlo (MCMC) 
method, we perform the global fit from the current observational 
data and constrain the model.

This paper is organized as follows: In Sec. 2, we introduce the 
�(t)CDM model and review its background cosmological evolu-
tions. In Sec. 3, we calculate the linear perturbation theory and 
illustrate the power spectra of the matter distribution and CMB 
temperature by the CAMB program [38]. In Sec. 4, we use the 
CosmoMC package [39] to fit the model from the observational 
data and show the constraints on cosmological parameters. Our 
conclusions are presented in Sec. 5.
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2. The running cosmological constant model

We start with the Einstein equation, given by

Rμν − gμν

2
R + �(t)gμν = κ2T M

μν , (1)

where κ2 = 8πG , R = gμν Rμν is the Ricci scalar, �(t) is the 
time-dependent cosmological constant, and T M

μν is the energy–
momentum tensor of matter and radiation. In the Friedmann–
Lemaïtre–Robertson–Walker (FLRW) case,

ds2 = a2(τ )
[
−dτ 2 + δi jdxidx j

]
, (2)

we obtain

H2 = a2κ2

3
(ρM + ρ�) , (3)

Ḣ = −a2κ2

2
(ρM + P M + ρ� + P�) , (4)

where τ is the conformal time, H = da/(adτ ) represents the Hub-
ble parameter, ρM (P M ) corresponds to the energy density (pres-
sure) of matter and radiation, and ρ� (P�) is the energy density 
(pressure) of the cosmological constant. We note that from the re-
lation of ρ� = −P� = κ−2�(t), derived from Eq. (1), one has the 
equation of state (EoS) of � to be

w� ≡ P�

ρ�

= −1 . (5)

In Eq. (1), we consider �(t) to be a linear function of the Hubble 
parameter, given by [29,35–37]

� = σ H + �0 , (6)

where σ and �0 are two free parameters. From Eq. (6), we can 
write ρ� with two dimensionless parameters λ0,1 as

ρ� = ρ0
�

[
λ0 + λ1

(
H

H0

)]
, (7)

where ρ0
� ≡ ρ�|z=0 is the current dark energy density with the 

condition λ0 + λ1 = 1 and λ1 = σ H0/(σ H0 + �0). Note that λ0
has been treated as a constant of integration and set to zero in 
Ref. [29]. Without loss of generality, we will keep λ0 as a free pa-
rameter with the �CDM model recovered when λ0 → 1.

Substituting Eq. (7) into the conservation equation ∇μ(T M
μν +

T �
μν) = 0, we have

ρ̇� + 3H(1 + w�)ρ� = ρ̇� ∝ Ḣ �= 0 , (8)

resulting in that dark energy unavoidably couples to matter and 
radiation, given by

ρ̇m + 3Hρm = Q m , (9)

ρ̇r + 4Hρr = Q r , (10)

where Q m,r are the decay rate from �(t) to matter and radiation, 
taken to be

Q i = ρ̇�Ci(ρi + Pi)∑
j=m,r C j(ρ j + P j)

, (11)

respectively. Note that the analytical solution of Eq. (8) has been 
obtained with λ0 = 0 and w M = constant in Refs. [24,25]. However, 
if λ0 �= 0 and ρM = ρm + ρr , composited of multi-fluid with EoS 
wr �= wm , the analytical solution no longer exists.

Fig. 1. Evolutions of ρm (blue line), ρr (green line) and ρ� (red line) with (a), 
(b) and (c) corresponding to (Cr , Cm) = (1, 1), (0, 1) and (1, 0), where the solid, 
dashed and dotted lines represent (λ0, λ1) = (1, 0), (0.9, 0.1) and (0, 1), respec-
tively. The initial conditions are taken as ρma3/ρch = 1 and ρra4/ρch = 3 × 10−4 at 
N ≡ ln a = −12, where ρch is the characteristic energy density. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of 
this article.)

In Fig. 1, we show the cosmological evolutions of ρm (blue 
line), ρr (green line) and ρ� (red line), normalized by the char-
acteristic energy density ρch , as functions of the e-folding N ≡ ln a
with ρma3/ρch = 1 and ρra4/ρch = 3 × 10−4 at N = −12, where 
(Cr, Cm) are (a) (1, 1), (b) (1, 0) and (c) (0, 1) with (λ0, λ1) =
(1, 0), (0.9, 0.1) and (0, 1), corresponding to the solid, dashed and 
dotted lines, respectively. In Fig. 1c, we observe that if dark energy 
fully decays to radiation, ρr can be of the same order of ρm at 
λ1 � 0.1, which violates the current observations. On the contrary, 
this problem never occurs if �(t) only couples to matter as shown 
in Fig. 1b. This behavior allows us to fix Cm = 1 and keep Cr to be 
a free parameter in the later study. In Fig. 2, we present a3ρm (blue 
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