
Physics Letters B 760 (2016) 605–610

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Bouncing cosmologies in geometries with positively curved spatial 
sections

Jaume Haro

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 April 2016
Accepted 20 July 2016
Available online 22 July 2016
Editor: M. Trodden

Background bouncing cosmologies, driven by a single scalar field, having a quasi-matter domination pe-
riod during the contracting phase, i.e., depicting the so-called Matter Bounce Scenario, are reconstructed 
for cosmologies with spatial positive curvature. These cosmologies lead to a nearly flat power spectrum 
of the fluctuation curvature in co-moving coordinates for modes that leave the Hubble radius during this 
quasi-matter domination period, and whose spectral index and its running, which are related with the 
effective Equation of State parameter given by the quotient of the pressure over the energy density, are 
compatible with experimental data.
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1. Introduction

Bouncing cosmologies (see [1] for a review) do not have the 
horizon problem that appears in Big Bang cosmology [2] and, when 
the bounce is symmetric, improve the flatness problem (where 
spatial flatness is an unstable fixed point and fine tuning of ini-
tial conditions is required), because the contribution of the spatial 
curvature decreases in the contracting phase at the same rate as 
it increases in the expanding one (see for instance [3]). Therefore 
they could, in principle, be a viable alternative to the inflationary 
paradigm [4]. On the other hand, it is well known that when the 
background is the Friedmann–Lemaître–Robertson–Walker (FLRW) 
geometry and one has a single scalar field filling the Universe, 
within General Relativity (GR), only geometries with positive spa-
tial curvature could lead to bounces. However, the most usual way 
to obtain bounces is to work in the flat FLRW space-time and to 
introduce nonconventional matter fields [5] in order to break down 
the weak energy condition ρ + P > 0 (being ρ the energy density 
and P the pressure), or to go beyond GR and to deal with theories 
such as Loop Quantum Cosmology (LQC), where holonomy correc-
tions introduce a quadratic correction in the Friedmann equation 
leading to a Big Bounce that replaces the Big Bang singularity (see, 
for instance, [6]), modified F (R) gravity [7] or teleparallel F (T )

theories [2,8].
Once one has a bouncing background, the next step is to deal 

with cosmological perturbations. There is a well-known duality be-
tween a matter domination epoch in the contracting phase and 
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the de Sitter regime in the expanding one [9], thus a quasi-matter 
dominated Universe when modes leave the Hubble radius in the 
contracting phase would produce the same kind of power spec-
trum as a quasi-de Sitter Universe (an inflationary Universe) when 
modes leave the Hubble radius in the expanding phase. In fact, it 
has been shown that bouncing cosmologies in the flat FLRW space-
time produce a nearly flat power spectrum [10], as in inflation.

The main goal of the present work is to provide, for the 
K = 1-FLRW metric and using a single scalar field, background 
bouncing cosmologies in the framework of GR, and calculate the 
corresponding power spectrum of the curvature fluctuations in co-
moving coordinates.

These backgrounds cannot come from a field mimicking a fluid 
with Equation of State (EoS) P = wρ as in holonomy corrected 
LQC [11], because when the spatial curvature is positive, a lin-
ear EoS produces cosmologies with a Big Bang and a Big Crush. 
Then, the way to obtain bouncing cosmologies is to choose some 
particular bouncing backgrounds, for instance a(t) = (ρct2 + 1)n , 
in our case bouncing symmetric backgrounds that have a quasi-
matter domination (see equation (14) which is our main model), 
that is, we choose some Matter Bouncing Scenarios (see [12] for a 
recent review), and apply the reconstruction techniques to obtain 
a potential and the corresponding conservation equation (a sec-
ond order differential equation) whose solutions lead to different 
cosmologies. In general it is impossible to calculate analytically 
that potential, and thus, numerical calculations are needed to re-
cover it. Once the potential has been calculated, one can calculate 
numerically the different backgrounds, and for each one of them 
the corresponding relevant terms of the power spectrum such as 
the spectral index and its running, coming from the Mukhanov–
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Sasaki equation for geometries with positively curved space sec-
tions [13–15]. However, these numerical calculations are very in-
volved and need future investigation, for this reason here we will 
only calculate the spectral index and its running for our main back-
ground (14), and we will indicate how they will be for the other 
backgrounds.

The units used throughout the work are h̄ = c = 8πG = 1.

2. Potential reconstruction for a single scalar field

When one deals with a single scalar field, in the K = 1-FLRW 
geometry, the Raychaudhuri equation in cosmic time becomes [13]
(see also equation (6) of [14] where it appears in conformal time)

Ḣ = − ϕ̇2

2
+ 1

a2
. (1)

Then, given some background, i.e. a scale factor a(t), and thus 
the Hubble parameter H(t) = ȧ(t)

a(t) and its derivative, from the equa-
tion

ϕ(t) =
t∫

t̃0

√
−2

(
Ḣ(s) − 1

a2(s)

)
ds, (2)

where ̃t0 is an arbitrary constant, we obtain the relation between 
the scalar field and the cosmic time, namely ϕ = g(t).

On the other hand, using the Friedmann equation [16],

H2 = ρ

3
− 1

a2
, (3)

we obtain the potential as a function of time

V̄ (t) = 3H2(t) + Ḣ(t) + 2

a2(t)
, (4)

and making the replacement t = g−1(ϕ) (note that g is always an 
inversible function because ġ ≥ 0 for all cosmic time t), one finally 
obtains the corresponding potential

V (ϕ) ≡ V̄ (g−1(ϕ)). (5)

In general, it is impossible to find analytically the function g−1, 
and thus, the potential must be obtained numerically, but there are 
some cases where an analytic calculation is allowed.

Example 2.1. As an academic example we choose the scale factor 
a(t) = a0(ρct2 + 1) with 4a2

0ρc = 1. One easily obtains Ḣ − 1
a =

− 2ρc
ρct2+1

, then taking t̃0 = 0 in (2) one gets

ϕ(t) = 2 ln(
√

ρct +
√

ρct2 + 1) ⇐⇒ ρct2 + 1 = (eϕ + 1)2

4eϕ
. (6)

Finally, inserting this last expression in (4) one will get the 
symmetric potential

V (ϕ) = 40ρceϕ

(1 + eϕ)2
, (7)

which has the same shape as the potential [11]

V (ϕ) = 2ρc(1 − w)e
√

3(1+w)ϕ(
1 + e

√
3(1+w)ϕ

)2
(8)

used in holonomy corrected LQC to mimic a hydrodynamical 
fluid with EoS P = wρ (for the potential (7) one has to choose 
w = − 2

3 ). Of course, in geometries with positively curved spatial 
sections the potential (7) does not mimic any hydrodynamical fluid 
with a linear EoS, but it depicts some bouncing backgrounds (see 
Fig. 1).

Once we have reconstructed the potential, the dynamics is 
given by the following autonomous system⎧⎨⎩

ϕ̇ = ψ

ψ̇ + 3H±(ϕ,ψ,a)ψ + Vϕ = 0
ȧ = H±(ϕ,ψ,a)a,

(9)

where

H±(ϕ,ψ,a) = ±
√

ψ2

6
+ V (ϕ)

3
− 1

a2
. (10)

Note that equation (9) is a first order system of three differen-
tial equations, so apart from the originally chosen background it 
leads to infinitely many new, different ones.

In fact, we have integrated numerically the equation (9) for 
the potential given in Example 2.1, obtaining a set of measure no 
zero in the ensemble of initial conditions (ϕ0, ψ0, a0) that leads 
to backgrounds with only one bounce, that is, depicting at very 
early times (resp. late times) a universe in the contracting (resp. 
expanding) phase (see Fig. 1). As we have already explained this 
potential is a particular case of the potentials used in holonomy 
corrected LQC to mimic a hydrodynamical fluid with linear EoS. 
This opens the possibility to study these potentials in the con-
text of K = 1-FLRW geometry, and to obtain new bouncing back-
grounds solving numerically the equation (9).

Coming back to the reconstruction method, note that the con-
dition to reconstruct the potential is that Ḣ(t) − 1

a2(t)
must be 

negative for all cosmic time. This places constrains on the back-
grounds, for example dealing with the simplest bouncing scale 
factor a(t) = a0(ρct2 + 1)

α
2 , only could be reconstructed when 

αa2
0ρc ≤ 1. In fact, it is easy to show that the condition

αa2
0ρc ≤ 1, 1 ≤ α ≤ 2, (11)

is enough to reconstruct the potential corresponding to the simple 
background a(t) = a0(ρct2 + 1)

α
2 .

On the other hand, for these backgrounds the effective EoS pa-
rameter given by the ratio of the pressure to the energy density is 
given by

w ≡ P

ρ
= −1 − 2(a2 Ḣ − 1)

3(a2 H2 + 1)

= −1 − 2

3

⎛⎝ αρca2
0xα

(
2
x2 − 1

x

)
− 1

α2ρca2
0xα

(
1
x − 1

x2

)
+ 1

⎞⎠ , (12)

where x ≡ ρct2 + 1. When x � 1, i.e. far away from the bounce, it 
becomes

w = −1 + 2

3

(
αρca2

0xα−1 − 1

α2ρca2
0xα−1 + 1

)
. (13)

Then, for 0 < α < 1, when αρca2
0 ≤ 1 one has w = − 1

3 and 
when αρca2

0 � x1−α � 1 one has w = −1 + 2
3α which is nearly 

zero, and thus defines a quasi-matter dominated Universe, only 
when α ∼= 2

3 . On the other hand, for α ≥ 1 its impossible to have, 
far away to the bounce, a quasi-matter domination, because in that 
case one always has w ≤ −1 + 2

3 = − 1
3 .

This result means that one cannot reconstruct, using a single 
scalar field, a bouncing cosmology with the simplest scale factor 
a(t) = a0(ρct2 + 1)

α
2 (α > 0) that has a matter domination pe-

riod, because as we have already seen, the reconstruction only 
holds for αρca2

0 ≤ 1 and matter domination requires, in that case, 
αρca2

0 � 1. For this reason, in the framework of GR, if one wants to 
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