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Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account 
possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal 
energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four 
dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new 
perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences 
for the cosmological constant problem, inflation, and dark energy.
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To define a path integral over metrics in a quantum theory of 
gravity, one must introduce a regulator. Since the metric itself is 
a dynamical field, it is not clear in which metric to regularize and 
renormalize the theory, and how to ensure that the resulting an-
swer is coordinate invariant and background independent. For this 
purpose it is convenient to enlarge the gauge symmetry to include 
Weyl invariance in addition to general coordinate invariance. This 
can be achieved by introducing a Weyl compensator field and a 
fiducial metric which scale appropriately keeping the physical met-
ric Weyl invariant. The number of degrees of freedom remains the 
same upon imposing Weyl invariance. The path integral can now 
be regularized and renormalized using the fiducial metric.

A Weyl-invariant formulation has an important conceptual ad-
vantage because it separates scale transformations from coordinate 
transformations. The path integral can be regularized maintaining 
coordinate invariance at the quantum level. Weyl invariance can 
have potential anomalies in the renormalized theory but since it 
is a gauge symmetry all such anomalies must cancel. Coordinate 
invariance of the original theory then becomes equivalent to co-
ordinate invariance plus quantum Weyl invariance of the modified 
theory. This procedure is well-studied in two dimensions where 
the Liouville field plays the role of the Weyl compensator and 
quantum Weyl invariance implies nontrivial scaling exponents.

There are both theoretical and phenomenological motivations to 
develop a Weyl-invariant formulation of gravity in higher dimen-
sions, especially in the context of cosmology. Our chief theoretical 
motivation is to formulate the cosmological constant problem [1]
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in a manifestly gauge invariant way. The problem is usually stated 
in the language of effective field theories as a ‘naturalness problem’ 
analogous to the Higgs mass problem in electroweak theory or the 
strong-CP problem in quantum chromodynamics. The cosmological 
constant is the coupling constant of the identity operator added to 
the effective action. Since the identity has dimension zero, the cos-
mological constant term is the most relevant operator and should 
scale as Md

0 in d space-time dimension where the ultraviolet cutoff 
scale M0 is at least of the order of a TeV. To reproduce the ob-
served scale of the cosmological constant of the order of an meV, 
it is necessary to fine tune the bare vacuum energy.

This formulation of the cosmological constant problem is not 
entirely satisfactory. While the generation of the cosmological 
constant in the effective action depends only on short-distance 
physics, its measurement relies essentially on long-distance physics 
spanning almost the entire history of the universe. The physics of 
the cosmological constant thus spans more than a hundred loga-
rithmic length scales. Moreover, all scales are evolving in a cosmo-
logical setting, and there is no preferred time for setting the cutoff 
in a manner that respects coordinate invariance. Thus, even to pose 
the cosmological constant problem properly, it is desirable to de-
velop a formalism that accesses all time-scales in a gauge-invariant 
fashion.

A chief phenomenological motivation is to explore the pos-
sibility of effective time variation of vacuum energy. There is a 
substantial body of cosmological evidence for a slowly varying 
vacuum energy which is believed to have been responsible for 
an inflationary phase of exponential expansion in the very early 
universe. Observations of cosmic microwave background radiation 
indicate that the power spectrum generated during inflation is not 
strictly scale-free but has a slight red tilt. This implies that vacuum
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energy was not strictly constant but was slowly decaying during 
the inflationary era. Cosmological data also indicates that 69% of 
present energy density is in the form resembling vacuum energy. 
Time variation of dark energy is not established observationally at 
present but could be observed in planned observations. Any the-
oretical insight into the magnitude, equation of state, and time 
dependence of dark energy is clearly desirable.

Slowly varying vacuum energy can be represented by a cosmo-
logical constant � to first approximation. However, any time vari-
ation cannot be reintroduced simply by making � time-dependent 
because that would not be coordinate-invariant. A simple way 
to obtain time-dependent vacuum energy is to represent it by a 
slowly-rolling condensate of a scalar field. This idea is central to 
most current models of varying vacuum energy. Such a slowly-
rolling field is called the ‘inflaton’ during the inflationary era and 
‘quintessence’ during the present era. Models with scalar fields 
have the virtue of simplicity, but among the plethora of models 
none is particularly more compelling than the others; and our un-
derstanding of many questions of principle such as the initial value 
problem or the measure problem is less than satisfactory.

The puzzles regarding the cosmological constant, inflation, and 
dark energy all concern the nature of slowly varying vacuum en-
ergy. Occam’s razor suggests that perhaps the essential underly-
ing physics is governed by the same fundamental equations. With 
these motivations, I develop a Weyl-invariant formulation of quan-
tum cosmology to explore the possibility of slowly evolving vac-
uum energy that does not rely on fundamental scalars.

I start with a Weyl-invariant reformulation of classical general 
relativity in d spacetime dimensions by introducing a Weyl com-
pensator field � and a fiducial metric hμν . Given a UV cutoff M0, 
the reduced Planck scale Mp and the cosmological constant � cor-
respond to dimensionless ‘coupling constants’ κ2 and λ defined 
by:

Md−2
p := Md−2

0

κ2
� := λκ2M2

0 . (1)

The gravitational action I K [h, �] is given by

Md−2
0

2κ2

∫
dx e(d−2)�[Rh + (d − 2)(d − 1)|∇�)|2] (2)

where all contractions are using the metric h and dx := ddx 
√−h. 

The cosmological term is given by

I�[h,�] = −Md−2
p �

∫
dx ed� = −λMd

0

∫
dx ed� . (3)

All terms are coordinate invariant. Both I K and I� are sepa-
rately invariant under Weyl transformations:

hμν → e2ξ hμν , � → � − ξ . (4)

Consequently both I K and I� satisfy the Ward identities for coor-
dinate invariance:

∇ν(
−2 δ Ia√−h δhμν

) − 1√−h

δ Ia

δ�
∇μ� ≡ 0 (a = K ,�) , (5)

and for Weyl invariance:

hμν(
−2 δ Ia√−h δhμν

) − 1√−h

δ Ia

δ�
≡ 0 (a = K ,�) . (6)

The physical metric gμν := e2�hμν is Weyl invariant. In the ‘phys-
ical’ gauge we have � = 0 and hμν = gμν and (2) reduces to the 
Einstein–Hilbert action.

Consider a homogeneous and isotropic universe described by a 
spatially flat Robertson–Walker metric with scale factor a(t), filled 

with a perfect fluid of energy density ρ and pressure p. The clas-
sical evolution of the universe is governed by the first Friedmann 
equation

H2 = 2κ2ρ

(d − 2)(d − 1)Md−2
0

(7)

and the conservation equation

ρ̇ = −(d − 1)(p + ρ)H . (8)

For a perfect fluid with a barotropic equation of state p = wρ , the 
solutions to (7) and (8) are given by

ρ(t) = ρ∗(
a

a∗
)−γ , a(t) = a∗(1 + γ

2
H∗t)

2
γ , (9)

where ρ∗ , H∗ , a∗ are the initial values of various quantities at 
t = 0, and γ := (d − 1)(1 + w). For the classical tensor of the cos-
mological term, ρ∗ = λ∗Md

0, w = −1, and γ = 0. As γ → 0, the 
solution approaches nearly de Sitter spacetime with nearly expo-
nential expansion and nearly constant density. Note that the cos-
mological evolution equations depend analytically on d, so one can 
‘analytically continue’ the FLRW cosmologies.

Weyl invariance has potential anomalies at the quantum level. 
To gain intuition about these anomalies, we first consider space-
time near two dimensions, d = 2 + ε . To order ε , the total action I
without matter is given by

q2

4π

∫
dx

( Rh

ε
+ |∇�|2 + Rh� − 4πλM2

0

q2
e2�

)
(10)

where the coupling constant q defined by

q2 := 2πε

κ2
(11)

is held fixed as ε → 0. With χ := q � and μ = λM2
0, and ignor-

ing the first term which depends only the fiducial metric, (10)
is precisely the two-dimensional Liouville action with background 
charge q:

I[χ ] = 1

4π

∫
dx

(
|∇χ |2 + q Rh χ − 4πμ e2βχ

)
. (12)

The field χ is sometimes called the ‘timelike’ Liouville field be-
cause the kinetic term has a wrong sign, as expected for the 
conformal factor of the metric. Classical Weyl invariance implies 
β = 1/q, but this relation receives quantum corrections because 
the operator e2βχ is a composite operator with short-distance sin-
gularities. It can be renormalized treating χ as a free field [2] with 
the Green function G2 of the Laplacian �2:

�x
2 G2(x, y) = δ2(x, y) . (13)

There is a short-distance divergence arising from self-contractions 
which combine into an exponential of the coincident Green func-
tion G2(x, x). This divergence can be regularized by using a heat 
kernel with a short-time cutoff. Renormalization then consists in 
subtracting a logarithmically divergent term from the regularized 
G2(x, x). This procedure is manifestly local and coordinate invari-
ant. In two dimensions, any metric is conformal to the flat metric 
ημν : hμν = e2�ημν . The renormalized operator Oh(x) := [e2βχ ]h
depends on the fiducial metric used for regularization and satisfies

Oh(x) = e−2β2�(x) Oη(x) . (14)

The scalar � is a nonlocal functional of the metric:

�[h](x) := 1

2

∫
dy G2(x, y)Rh(y) . (15)
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