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We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources 
in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the 
probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the 
(3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass 
grows above the relevant D-dimensional Planck scale mD . At fixed mass, however, PBH decreases with 
increasing D , so that a particle with mass m � mD has just about 10% probability to be a black hole in 
D = 5, and smaller for larger D . This result has a potentially strong impact on estimates of black hole 
production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller 
masses, but PBH < 0.5, suggesting that such lower dimensional black holes are purely quantum and not 
classical objects. This result is consistent with recent observations that sub-Planckian black holes are 
governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty 
Principle relations for the black holes under consideration, and find a minimum length corresponding 
to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For 
D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual 
Heisenberg contribution, and therefore no fundamental scale exists.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Unusual causal structures like trapping surfaces and horizons 
can only occur in strongly gravitating systems, such as astrophysi-
cal objects that collapse and possibly form black holes. One might 
argue that for a large black hole, gravity should appear “locally 
weak” at the horizon, since tidal forces look small to a freely falling 
observer (their magnitude being roughly controlled by the surface 
gravity, which is inversely proportional to the horizon radius). Like 
any other classical signal, light is confined inside the horizon no 
matter how weak such forces may appear to a local observer. This 
can be taken as the definition of a “globally strong” interaction.

As the black hole’s mass approaches the Planck scale, tidal 
forces become strong both in the local and global sense, thus 
granting such an energy scale a remarkable role in the search for 
a quantum theory of gravity. It is indeed not surprising that mod-
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ifications to the standard commutators of quantum mechanics and 
Generalised Uncertainty Principles (GUPs) have been proposed, es-
sentially in order to account for the possible existence of small 
black holes around the Planck scale, and the ensuing minimum 
measurable length [1]. Unfortunately, that regime is presently well 
beyond our experimental capabilities, at least if one takes the 
Planck scale at face value,1 mp � 1016 TeV (corresponding to a 
length scale �p = h̄/mp = mp GN � 10−35 m). Nonetheless, there is 
the possibility that the low energy theory still retains some sig-
nature features that could be accessed in the near future (see, for 
example, Ref. [2]).

1.1. Gravitational radius and horizon wave-function

Before we start calculating phenomenological predictions, it is 
of the foremost importance that we clarify the possible conceptual 
issues arising from the use of arguments and observables that we 
know work at our every-day scales. One of such key concepts is 

1 We use units where c = 1 and h̄ = �p mp = �D mD .
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the gravitational radius of a self-gravitating source, which can be 
used to assess the existence of trapping surfaces, at least in spher-
ically symmetric systems. As it is very well known, the location of 
a trapping surface is determined by the equation

gij∇ir∇ jr = 0 , (1.1)

where ∇ir is perpendicular to surfaces of constant area A = 4πr2. 
If we set x1 = t and x2 = r, and denote the matter density as ρ =
ρ(r, t), the Einstein field equations tell us that

grr = 1 − 2�p(m/mp)

r
, (1.2)

where the Misner–Sharp mass is given by

m(r, t) = 4π

r∫
0

ρ(r̄, t)r̄2 dr̄ , (1.3)

as if the space inside the sphere were flat. A trapping surface then 
exists if there are values of r and t such that the gravitational ra-
dius RS = 2 �p m/mp, satisfies

RS(r, t) ≥ r . (1.4)

When the above relation holds in the vacuum outside the region 
where the source is located, RS becomes the usual Schwarzschild 
radius, and the above argument gives a mathematical foundation 
to Thorne’s hoop conjecture [3], which (roughly) states that a black 
hole forms when the impact parameter b of two colliding small 
objects is shorter than the Schwarzschild radius of the system, that 
is for b � 2 �p E/mp where E is the total energy in the centre-of 
mass frame.

If we consider a spin-less point-particle of mass m, the Heisen-
berg principle of quantum mechanics introduces an uncertainty in 
the particle’s spatial localisation of the order of the Compton scale 
λm � �p mp/m.2 Since quantum physics is a more refined descrip-
tion of reality, we could argue that RS only makes sense if3

RS � λm =⇒ m � mp , (1.5)

which brings us to face the conceptual challenge of describing 
quantum mechanical systems whose classical horizon would be 
smaller than the size of the uncertainty in their position. In 
Refs. [6], a proposal was put forward in order to describe the 
“fuzzy” Schwarzschild (or gravitational) radius of a localised but 
likewise fuzzy quantum source. One starts from the spectral de-
composition of the spherically symmetric wave-function

|ψS〉 =
∑

E

C(E) |ψE 〉 , (1.6)

with the usual constraint

Ĥ |ψE〉 = E |ψE〉 , (1.7)

and associates to each energy level |ψE〉 a probability amplitude 
ψH(RS) � C(E), where RS = 2 �p E/mp. From this Horizon Wave-
Function (HWF), a GUP and minimum measurable length were de-
rived [7], as well as corrections to the classical hoop conjecture [8], 
and a modified time evolution proposed [9]. The same approach 

2 Strictly speaking, this bound holds in the non-relativistic limit E � 2 m [4], but 
we shall employ it in this work since we always consider particles and black holes 
in their rest frame.

3 One could also derive this condition from the famous Buchdahl’s inequality [5], 
which is however a result of classical general relativity, whose validity in the quan-
tum domain we cannot take for granted.

was generalised to electrically charged sources [10], and used to 
show that Bose–Einstein condensate models of black holes [11–15]
actually possess a horizon with a proper semiclassical limit [16].

It is important to emphasise that the HWF approach differs 
from most previous attempts in which the gravitational degrees of 
freedom of the horizon, or of the black hole metric, are quantised 
independently of the nature and state of the source (for some bib-
liography, see, e.g., Ref. [17]). In our case, the gravitational radius 
is instead quantised along with the matter source that produces 
it, somewhat more in line with the highly non-linear general rela-
tivistic description of the gravitational interaction. However, having 
given a practical tool for describing the gravitational radius of a 
generic quantum system is just the starting point. In fact, when 
the probability that the source is localised within its gravitational 
radius is significant, the system should show (some of) the proper-
ties ascribed to a black hole in general relativity. These properties, 
the fact in particular that no signal can escape from the interior, 
only become relevant once we consider how the overall system 
evolves.

1.2. Higher and lower dimensional models

Extra-dimensions have been proposed as a possible explana-
tion for some of the incongruences affecting particle physics, such 
as the hierarchy problem between fundamental interactions. In 
(1 + D)-dimensional space-times, with D ≥ 4, gravity shows its 
true quantum nature at a scale mD (possibly much) lower than the 
Planck mass mp. Such scenarios have been extensively studied after 
the well known ADD [18] and Randall–Sundrum [19] models were 
proposed (see Ref. [20] for a comprehensive review). However our 
purpose is not to study any model in particular, but to see how the 
probability of a microscopic black hole formation could be affected 
by assuming the existence of extra dimensions. We shall therefore 
just consider black holes in the ADD scenario with a horizon ra-
dius significantly shorter than the size of the extra dimensions. It 
is then important to recall that in these models the Newton con-
stant is replaced by the gravitational constant

G D = �D−2
D

mD
, (1.8)

where �D = h̄/mD � �p is the new gravitational length scale.
On the other hand, gravitational theories become much sim-

pler in space-times with fewer than 3 spatial dimensions, where 
corresponding quantum theories are exactly solvable [21]. Such 
theories have been revisited in recent years, motivated by model-
independent evidence that the number of space-time dimensions 
decreases as the Planck length is approached. Such formalisms – 
known generically as “spontaneous dimension reduction” mecha-
nisms – have been studied in various contexts, mostly focusing on 
the energy-dependence of the space-time spectral dimension, in-
cluding causal dynamical triangulations [22] and non-commutative 
geometry inspired mechanisms [23–26]. An alternative approach 
suggests the effective dimensionality of space-time increases as the 
ambient energy scale drops [27–30].

Given these arguments, we will generealize the results of 
Ref. [9] in an arbitrary number of spatial dimensions. In Section 2
we will introduce the concept horizon wave-function and we will 
apply it to a system described by a gaussian wave-packet. Subse-
quently, we will compute the probability that the system is a black 
hole in Section 3 and obtain a Generalised Uncertainty Principle in 
Section 4. Finally we will give some conclusions and possible out-
look about the obtained results in Section 5.
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