Physics Letters B 760 (2016) 139-142

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Angular distributions in $J/\psi \rightarrow p\bar{p}\pi^0(\eta)$ decays

V.F. Dmitriev^{a,b}, A.I. Milstein^{a,b}, S.G. Salnikov^{a,b,c,*}

^a Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

^b Novosibirsk State University, 630090, Novosibirsk, Russia

^c L.D. Landau Institute for Theoretical Physics, 142432, Chernogolovka, Russia

ARTICLE INFO

Article history: Received 8 April 2016 Received in revised form 14 June 2016 Accepted 23 June 2016 Available online 28 June 2016 Editor: J.-P. Blaizot

ABSTRACT

The differential decay rates of the processes $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$ close to the $p\bar{p}$ threshold are calculated with the help of the $N\bar{N}$ optical potential. The same calculations are made for the decays of $\psi(2S)$. We use the potential which has been suggested to fit the cross sections of $N\bar{N}$ scattering together with $N\bar{N}$ and six pion production in e^+e^- annihilation close to the $p\bar{p}$ threshold. The $p\bar{p}$ invariant mass spectrum is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the $N\bar{N}$ interaction, is predicted close to the $p\bar{p}$ threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of $N\bar{N}$ interaction.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The cross section of the process $e^+e^- \rightarrow p\bar{p}$ reveals an enhancement near the threshold [1–4]. The enhancement near the $p\bar{p}$ threshold has been also observed in the decays $J/\psi \rightarrow \gamma p\bar{p}$, $B^+ \rightarrow K^+p\bar{p}$, and $B^0 \rightarrow D^0p\bar{p}$ [5–7]. These observations led to numerous speculations about a new resonance [5], $p\bar{p}$ bound state [8–10] or even a glueball state [11–13] with the mass near two proton mass. This enhancement could appear due to the nucleonantinucleon final-state interaction. It has been shown that the behavior of the cross sections of $N\bar{N}$ production in e^+e^- annihilation can be explained with the help of Jülich model [14,15] or slightly modified Paris model [16,17]. These models also describe the energy dependence of the proton electromagnetic form factors ratio $\left|G_E^P/G_M^P\right|$. A strong dependence of the tensor part of the $N\bar{N}$ interaction.

Another phenomenon has been observed in the process of $e^+e^$ annihilation to mesons. A sharp dip in the cross section of the process $e^+e^- \rightarrow 6\pi$ has been found in the vicinity of the $N\bar{N}$ threshold [18–22]. This feature is related to the virtual $N\bar{N}$ pair production with subsequent annihilation to mesons [23,24]. In Ref. [24] a potential model has been proposed to fit simultaneously the cross sections of $N\bar{N}$ scattering and $N\bar{N}$ production in e^+e^- an-

* Corresponding author.

nihilation. This model describes the cross section of the process $e^+e^- \rightarrow 6\pi$ near the $N\bar{N}$ threshold as well. A qualitative description of this process was also achieved using the Jülich model [23].

In this paper we investigate the decays $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$ taking the $p\bar{p}$ final-state interaction into account. Investigation of these processes has been performed in Refs. [25,26] using the chiral model [27]. However, the tensor part of the $p\bar{p}$ interaction was neglected in that paper. To describe the $p\bar{p}$ interaction we use the potential model proposed in Ref. [24], where the tensor forces play an important role. The account for the tensor interaction allows us to analyze the angular distributions in the decays of J/ψ and $\psi(2S)$ to $p\bar{p}\pi^0(\eta)$ near the $p\bar{p}$ threshold. The parameter of anisotropy is large enough to be studied in the experiments.

2. Decay amplitude

Possible states for a $p\bar{p}$ pair in the decays $J/\psi \rightarrow p\bar{p}\pi^0$ and $J/\psi \rightarrow p\bar{p}\eta$ have quantum numbers $J^{PC} = 1^{--}$ and $J^{PC} = 1^{+-}$. The dominating mechanism of the $p\bar{p}$ pair creation is the following. The $p\bar{p}$ pair is created at small distances in the 3S_1 state and acquires an admixture of 3D_1 partial wave at large distances due to the tensor forces in the nucleon-antinucleon interaction. The $p\bar{p}$ pairs have different isospins for the two final states under consideration (I = 1 for the $p\bar{p}\pi^0$ state, and I = 0 for the $p\bar{p}\eta$ state), that allows one to analyze two isospin states independently. Therefore, these decays are easier to investigate theoretically than the process $e^+e^- \rightarrow p\bar{p}$, where the $p\bar{p}$ pair is a mixture of different isospin states.

http://dx.doi.org/10.1016/j.physletb.2016.06.056

E-mail addresses: V.F.Dmitriev@inp.nsk.su (V.F. Dmitriev), A.I.Milstein@inp.nsk.su (A.I. Milstein), S.G.Salnikov@inp.nsk.su (S.G. Salnikov).

^{0370-2693/© 2016} The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

We derive the formulas for the decay rate of the process $J/\psi \rightarrow p\bar{p}x$, where *x* is one of the pseudoscalar mesons π^0 or η . The following kinematics is considered: **k** and ε_k are the momentum and the energy of the *x* meson in the J/ψ rest frame, **p** is the proton momentum in the $p\bar{p}$ center-of-mass frame, *M* is the invariant mass of the $p\bar{p}$ system. The following relations hold:

$$p = |\mathbf{p}| = \sqrt{\frac{M^2}{4} - m_p^2},$$

$$k = |\mathbf{k}| = \sqrt{\varepsilon_k^2 - m^2},$$

$$\varepsilon_k = \frac{m_{J/\psi}^2 + m^2 - M^2}{2m_{J/\psi}},$$
(1)

where *m* is the mass of the *x* meson, $m_{J/\psi}$ and m_p are the masses of a J/ψ meson and a proton, respectively, and $\hbar = c = 1$. Since we consider the $p\bar{p}$ invariant mass region $M - 2m_p \ll m_p$, the proton and antiproton are nonrelativistic in their center-of-mass frame, while ε_k is about 1 GeV.

The spin-1 wave function of the $p\bar{p}$ pair in the center-of-mass frame has the form [17]

$$\boldsymbol{\psi}_{\lambda}^{I} = \mathbf{e}_{\lambda} u_{1}^{I}(0) + \frac{u_{2}^{I}(0)}{\sqrt{2}} \left[\mathbf{e}_{\lambda} - 3 \hat{\boldsymbol{p}}(\mathbf{e}_{\lambda} \cdot \hat{\boldsymbol{p}}) \right],$$
(2)

where $\hat{\boldsymbol{p}} = \boldsymbol{p}/p$, \boldsymbol{e}_{λ} is the polarization vector of the spin-1 $p\bar{p}$ pair,

$$\sum_{\lambda=1}^{3} \mathbf{e}_{\lambda}^{i} \mathbf{e}_{\lambda}^{j*} = \delta_{ij} \,, \tag{3}$$

 $u_1^l(r)$ and $u_2^l(r)$ are the components of two independent solutions of the coupled-channels radial Schrödinger equations

$$\frac{p_r^2}{m_p}\chi_n + \mathcal{V}\chi_n = 2E\chi_n,$$

$$\mathcal{V} = \begin{pmatrix} V_S^I & -2\sqrt{2}V_T^I \\ -2\sqrt{2}V_T^I & V_D^I - 2V_T^I + \frac{6}{m_p r^2} \end{pmatrix}, \qquad \chi_n = \begin{pmatrix} u_n^I \\ w_n^I \end{pmatrix}.$$
(4)

Here $E = p^2/2m_p$, V_S^I and V_D^I are the $N\bar{N}$ potentials in *S*- and *D*-wave channels, and V_T^I is the tensor potential. Two independent regular solutions of these equations are determined by their asymptotic forms at large distances [17]

$$u_{1}^{l}(r) = \frac{1}{2ipr} \Big[S_{11}^{l} e^{ipr} - e^{-ipr} \Big],$$

$$u_{2}^{l}(r) = \frac{1}{2ipr} S_{21}^{l} e^{ipr},$$

$$w_{1}^{l}(r) = -\frac{1}{2ipr} S_{12}^{l} e^{ipr},$$

$$w_{2}^{l}(r) = \frac{1}{2ipr} \Big[-S_{22}^{l} e^{ipr} + e^{-ipr} \Big],$$

(5)

where S_{ij}^{I} are some functions of energy. The formula (2) corresponds to the Jost approximation, which is the near-threshold limit of the DWBA [28].

The Lorentz transformation for the spin-1 wave function of the $p\bar{p}$ pair can be written as

$$\tilde{\boldsymbol{\psi}}_{\lambda}^{l} = \boldsymbol{\psi}_{\lambda}^{l} + (\gamma - 1)\,\hat{\boldsymbol{k}}(\boldsymbol{\psi}_{\lambda}^{l}\cdot\hat{\boldsymbol{k}})\,,\tag{6}$$

where $\tilde{\psi}_{\lambda}^{I}$ is the wave function in the J/ψ rest frame, $\hat{k} = k/k$, and γ is the γ -factor of the $p\bar{p}$ center-of-mass frame. The component

collinear to **k** does not contribute to the amplitude of the decay under consideration because the amplitude is transverse to **k**. As a result, the dimensionless amplitude of the decay with the corresponding isospin of the $p\bar{p}$ pair can be written as

$$T_{\lambda\lambda'}^{I} = \frac{\mathcal{G}_{I}}{m_{I/\psi}} \psi_{\lambda}^{I} [\mathbf{k} \times \boldsymbol{\epsilon}_{\lambda'}].$$
⁽⁷⁾

Here G_l is an energy-independent dimensionless constant, $\epsilon_{\lambda'}$ is the polarization vector of J/ψ ,

$$\sum_{\lambda'=1}^{2} \epsilon_{\lambda'}^{i} \epsilon_{\lambda'}^{j*} = \delta_{ij} - n^{i} n^{j}, \qquad (8)$$

where **n** is the unit vector collinear to the momentum of electrons in the beam. The amplitude $T^{I}_{\lambda\lambda'}$ is the effective operator which should be linear with respect to the wave functions of each particle (ψ^{I}_{λ} for $p\bar{p}$ pair and $\epsilon_{\lambda'}$ for J/ψ meson). Only the wave functions depend on the polarization indexes λ and λ' . This is why the constant \mathcal{G}_{I} is independent of λ and λ' .

The decay rate of the process $J/\psi \rightarrow p\bar{p}x$ can be written in terms of the dimensionless amplitude $T^I_{\lambda\lambda'}$ as (see, e.g., [29])

$$\frac{d\Gamma}{dMd\Omega_p d\Omega_k} = \frac{pk}{2^9 \pi^5 m_{J/\psi}^2} \left| T_{\lambda\lambda'}^I \right|^2,\tag{9}$$

where Ω_p is the proton solid angle in the $p\bar{p}$ center-of-mass frame and Ω_k is the solid angle of the *x* meson in the J/ψ rest frame.

Substituting the amplitude (7) in Eq. (9) and averaging over the spin states, we obtain the $p\bar{p}$ invariant mass and angular distribution for the decay rate

$$\frac{d\Gamma}{dMd\Omega_{p}d\Omega_{k}} = \frac{\mathcal{G}_{I}^{2}pk^{3}}{2^{11}\pi^{5}m_{J/\psi}^{4}} \left\{ \left| u_{1}^{I}(0) + \frac{1}{\sqrt{2}}u_{2}^{I}(0) \right|^{2} + \left| u_{1}^{I}(0) - \sqrt{2}u_{2}^{I}(0) \right|^{2} (\boldsymbol{n} \cdot \hat{\boldsymbol{k}})^{2} + \frac{3}{2} \left[\left| u_{2}^{I}(0) \right|^{2} - 2\sqrt{2}\operatorname{Re}\left(u_{1}^{I}(0)u_{2}^{I*}(0) \right) \right] \times \left[(\boldsymbol{n} \cdot \hat{\boldsymbol{p}})^{2} - 2(\boldsymbol{n} \cdot \hat{\boldsymbol{k}})(\boldsymbol{n} \cdot \hat{\boldsymbol{p}})(\hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{k}}) \right] \right\}.$$
(10)

The invariant mass distribution can be obtained by integrating Eq. (10) over the solid angles Ω_p and Ω_k :

$$\frac{d\Gamma}{dM} = \frac{\mathcal{G}_I^2 p k^3}{2^5 \, 3\pi^3 m_{J/\psi}^4} \left(\left| u_1^I(0) \right|^2 + \left| u_2^I(0) \right|^2 \right). \tag{11}$$

The sum in the brackets is the so-called enhancement factor which equals to unity if the $p\bar{p}$ final-state interaction is turned off.

More information about the properties of $N\bar{N}$ interaction can be extracted from the angular distributions. Integrating Eq. (10) over Ω_p we obtain

$$\frac{d\Gamma}{dMd\Omega_k} = \frac{\mathcal{G}_I^2 p k^3}{2^9 \pi^4 m_{J/\psi}^4} \left(\left| u_1^I(0) \right|^2 + \left| u_2^I(0) \right|^2 \right) \\ \times \left[1 + \cos^2 \vartheta_k \right], \tag{12}$$

where ϑ_k is the angle between \boldsymbol{n} and \boldsymbol{k} . However, the angular part of this distribution does not depend on the features of the $p\bar{p}$ interaction. The proton angular distribution in the $p\bar{p}$ center-of-mass frame is more interesting. To obtain this distribution we integrate Eq. (10) over the solid angle Ω_k :

Download English Version:

https://daneshyari.com/en/article/1848603

Download Persian Version:

https://daneshyari.com/article/1848603

Daneshyari.com