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The mass dimension one fermionic field associated with Elko satisfies the Klein–Gordon but not the Dirac 
equation. However, its propagator is not a Green’s function of the Klein–Gordon operator. We propose 
an infinitesimal deformation to the propagator such that it admits an operator in which the deformed 
propagator is a Green’s function. The field is still of mass dimension one, but the resulting Lagrangian is 
modified in accordance with the operator.
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1. Introduction

The theoretical discovery of Elko and the associated mass di-
mension one fermions by [2,3] is a radical departure from the 
Standard Model (SM). These fermions have renormalizable self-
interactions and only interact with the SM particles through grav-
ity and the Higgs boson. These properties make them natural dark 
matter candidates.

Since their conceptions, Elko and its fermionic fields have 
been studied in many disciplines. The graviational interactions of 
Elko have received much attention [8,9,11–18,20,23,29,36,46,47,49]
while its mathematical properties have been investigated by da 
Rocha and collaborators [10,22,24–28,38]. These works established 
Elko as an inflaton candidate and that it is a flagpole spinor of the 
Lounesto classification [42] thus making them fundamentally dif-
ferent from the Dirac spinor. In particle physics, the signatures of 
these mass dimension one fermions at the Large Hardon Collider 
have been studied [7,30]. In quantum field theory, much of the 
attention is focused on the foundations of the construction [5,6,
19,32–34,41,43–45]. Their supersymmetric and higher-spin exten-
sions have also been carried out by [40,50]. An important result is 
that the fermionic field and its higher-spin generalization violate 
Lorentz symmetry due to the existence of a preferred direction. 
This led Ahluwalia and Horvath to suggest that the fermionic field 
satisfies the symmetry of very special relativity [4,21].

One question remains unanswered in the literature. What is 
the correct Lagrangian of the mass dimension one fermion? Since 
the field is constructed using Elko as expansion coefficients which 
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satisfy the Klein–Gordon equation, the naive answer would be 
the Klein–Gordon Lagrangian. But this has two unsatisfactory as-
pects. Firstly, the resulting field-momentum anti-commutator is 
not given by the Dirac-delta function. Secondly, the propagator is 
not a Green’s function of the Klein–Gordon operator.

We propose an infinitesimally deformed propagator such that 
it is an Green’s function to an operator. The resulting Lagrangian 
determined from the operator does not have the above mentioned 
problems and is still of mass dimension one.

2. The Elko construct

We briefly review the construction of Elko and its fermionic 
field. For more details, please refer to the review article [1]. Elko 
is a German acronym for Eigenspinoren des Ladungskonjugations-
operators. They are a complete set of eigenspinors of the charge-
conjugation operator of the ( 1

2 , 0) ⊕ (0, 12 ) representation of the 
Lorentz group. The charge-conjugation operator is defined as

C =
(

O −i�−1

−i� O

)
K (1)

where K complex conjugates anything to its right and � is the 
spin-half Wigner time-reversal matrix

� =
(

0 −1
1 0

)
. (2)

Its action on the Pauli matrices σ = (σ1, σ2, σ3) is

�σ�−1 = −σ ∗. (3)
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The complete set of Elko is constructed from a four-component 
spinor of the form

χ(p,α) =
(

ϑ�φ∗(p,σ )

φ(p,σ )

)
(4)

where φ(ε, σ) is a left-handed Weyl spinor in the helicity basis 
with ε = lim|p|→0 p̂ and

1

2
σ · p̂φ(ε,σ ) = σφ(ε,σ ) (5)

so that σ = ± 1
2 denotes the helicity. Here α = ∓σ denotes the 

dual-helicity nature of the spinor with the top and bottom signs 
denoting the helicity of the right- and left-handed Weyl spinors 
respectively. The spinor χ(p, α) becomes the eigenspinor of the 
charge-conjugation operator C with the following choice of phases

Cχ(p,α)|ϑ=±i = ±χ(p,α)|ϑ=±i (6)

thus giving us four Elkos. Spinors with the positive and negative 
eigenvalues are called the self-conjugate and anti-self-conjugate 
spinors. They are denoted as

Cξ(p,α) = ξ(p,α), (7a)

Cζ(p,α) = −ζ(p,α). (7b)

There are subtleties involved in choosing the labellings and phases 
for the self-conjugate and anti-self-conjugate spinors. The details, 
including the solutions of the spinors can be found in [6, sec. II.A].

The Elko dual which yields the invariant inner-product is de-
fined as [1,48]

¬
ξ(p,α) = [�(p)ξ(p,α)]†�, (8a)
¬
ζ (p,α) = [�(p)ζ(p,α)]†� (8b)

where † represents Hermitian conjugation and � is a block-off-
diagonal matrix comprised of 2 × 2 identity matrix

� =
(

O I
I O

)
. (9)

The matrix �(p) is defined as

�(p) = 1

2m

∑
α

[
ξ(p,α)ξ̄(p,α) − ζ(p,α)ζ̄(p,α)

]
. (10)

The bar over the spinors denotes the Dirac dual. The dual ensures 
that the Elko norms are orthonormal
¬
ξ(p,α)ξ(p,α′) = −¬

ζ (p,α)ζ(p,α′) = 2mδαα′ (11)

and their spin-sums read∑
α

ξ(p,α)
¬
ξ (p,α) = m[G(φ) + I], (12a)

∑
α

ζ(p,α)
¬
ζ (p,α) = m[G(φ) − I] (12b)

where G(φ) is an off-diagonal matrix

G(φ) = i

⎛
⎜⎜⎜⎜⎝

0 0 0 −e−iφ

0 0 eiφ 0

0 −e−iφ 0 0

eiφ 0 0 0

⎞
⎟⎟⎟⎟⎠ . (13)

The angle φ is defined via the following parametrization of the 
momentum

p = |p|(sin θ cosφ, sin θ sinφ, cos θ) (14)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π . Multiply eqs. (12a) and (12b)
with ξ(p, α′) and ζ(p, α′) from the right and apply the orthonor-
mal relations, we obtain

[G(φ) − I] ξ(p,α) = 0, (15a)

[G(φ) + I] ζ(p,α) = 0. (15b)

Since these identities have no explicit energy dependence, the cor-
responding equation in the configuration space has no dynamics 
and therefore cannot be the field equation for the mass dimension 
one fermions. Nevertheless, writing the above identities in the con-
figuration space for λ(x) is non-trivial and is a task that must be 
accomplished in order to derive the Hamiltonian. This issue is ad-
dressed in the next section.

Identifying the self-conjugate and anti-self-conjugate spinors 
with the expansion coefficients for particles and anti-particles, the 
two mass dimension one fermionic fields and their adjoints, with 
the appropriate normalization are

�(x) = (2π)−3/2
∫

d3 p√
2mEp

∑
α

[e−ip·xξ(p,α)a(p,α)

+ eip·xζ(p,α)b‡(p,α)], (16a)

¬
�(x) = (2π)−3/2

∫
d3 p√
2mEp

∑
α

[eip·x¬
ξ(p,α)a‡(p,α)

+ e−ip·x¬
ζ (p,α)b(p,α)], (16b)

λ(x) = �(x)|b‡=a‡ , (16c)
¬
λ(x) = ¬

�(x)|b‡=a‡ . (16d)

Here a(p, α) and b‡(p, α) are the annihilation and creation op-
erators for particles and anti-particles. They satisfy the standard 
anti-commutation relations

{a(p′,α′),a‡(p,α)} = {b(p′,α′),b‡(p,α)}
= δα′αδ3(p′ − p). (17)

Note that for the creation operators, we have introduced a new op-
erator ‡ in place of the usual Hermitian conjugation †. This follows 
from the observation that since the Dirac and Elko dual are differ-
ent, it suggests that the corresponding adjoints for the respective 
particle states may be different. Assuming they are different, it 
may then become necessary to develop a new formalism for par-
ticles states with the new ‡ adjoint in parallel to [31]. This is an 
important issue that deserves further study but since it does not 
affect our objective of deriving the Lagrangian, we shall leave it for 
future investigation.

3. The Lagrangian: defining the problem

There are two reasons why the Klein–Gordon Lagrangian are 
unsatisfactory for the mass dimension one fermions. Firstly, the 
field does not satisfy the canonical anti-commutation relations 
(CARs) since the field-momentum anti-commutator is not equal to 
iδ3(x − y)I . Instead, it is given by1

{λ(t,x),πkg(t,y)} = i

∫
d3 p

(2π)3
e−ip·(x−y)[I + G(φ)] (18)

1 For the rest of the paper, we will be working with λ(x), but the results hold for 
�(x) also.
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