
Physics Letters B 760 (2016) 244–248

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Quantum dress for a naked singularity

Marc Casals a,b,∗, Alessandro Fabbri c,d,e,f, Cristián Martínez g, Jorge Zanelli g

a Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, CEP 22290-180, Brazil
b School of Mathematical Sciences and Complex & Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
c Centro Studi e Ricerche E. Fermi, Piazza del Viminale 1, 00184 Roma, Italy
d Dipartimento di Fisica dell’Università di Bologna and INFN sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy
e Laboratoire de Physique Théorique, CNRS UMR 8627, Bât. 210, Université Paris-Sud 11, Univ. Paris-Saclay, 91405 Orsay Cedex, France
f Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, C. Dr. Moliner 50, 46100 Burjassot, Spain
g Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2016
Accepted 20 June 2016
Available online 23 June 2016
Editor: M. Cvetič
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We investigate semiclassical backreaction on a conical naked singularity space–time with a negative 
cosmological constant in (2 +1)-dimensions. In particular, we calculate the renormalized quantum stress–
energy tensor for a conformally coupled scalar field on such naked singularity space–time. We then 
obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime 
where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with 
an event horizon, thus enforcing (weak) cosmic censorship.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Naked Singularities (NSs) in gravitation theory are irksome: the 
curvature tensor and the energy density can ‘blow up’; the space–
time fabric may fail to resemble a smooth manifold and it may not 
be possible to continue geodesics past them; the laws of physics 
and standard features like causality may be violated [1]. If sin-
gularities are hidden behind an event horizon, however, one can 
safely ignore the problem because no causal signal can reach an 
outside observer from the troublesome region. It is in the spirit
of Penrose’s Cosmic Censorship hypothesis that NSs do not occur 
in nature [2]. In its weak version, this hypothesis essentially states 
that, generically, no ‘naked’ (i.e., without an event horizon) space–
time singularities can form in Nature. NSs have been seen to form 
in some settings in (3 + 1)-dimensions, e.g., [3,4], although how 
‘natural’ and ‘generic’ these settings are may be a matter of debate; 
in higher dimensions, NSs have been seen to form in [5]. However, 
in none of these works, quantum effects were taken into account. 
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That naturally leads to the question of whether NSs are stable un-
der quantum effects or else, for example, these effects lead to the 
formation of an event horizon.

Quantum effects on a curved background space–time, however, 
are notoriously difficult to calculate. One way to incorporate quan-
tum effects is to include them in the energy momentum tensor 
and to solve the ‘semiclassical’ Einstein equations (Eq. (2) below) 
for the backreaction on the metric. The quantized stress–energy 
tensor for matter fields suffers from well-known ultraviolet diver-
gences and so it must be appropriately renormalized (see, e.g., [6]). 
Such renormalization and obtention of the corresponding back-
reacted gravitational field, however, is very hard to perform in 
practice in (3 + 1)-dimensions unless the background space–time 
is highly-symmetric –such as pure de Sitter or pure anti-de Sit-
ter, (A)dS, space–times–, which is not the case for a black hole 
or NS space–times in (3 + 1)-dimensions. On the other hand, in 
a space–time with one dimension less it is possible to make sig-
nificant analytical progress while the results still yield an impor-
tant insight into the physical processes that take place and into 
what one might expect there to happen in similar settings in 
(3 + 1)-dimensions.

In this paper we will investigate conical defects/excesses in 
(2 + 1)-AdS space–time. These are a particular class of NSs that do 
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not seem to give rise to catastrophic phenomena. Like in an ordi-
nary cone, the curvature singularity is a Dirac delta distribution at 
the tip. The source that produces this curvature can be identified 
with a point particle, which can also be understood as a removed 
point from the manifold [7]. The geometry with the conical sin-
gularity is obtained by identification under a Killing vector in the 
universal covering of anti-de Sitter space–time, CAdS3, in complete 
analogy with the 2 + 1 (BTZ) black hole [8,9]. Since the identifica-
tion does not change the local geometry, the conical singularity is 
a locally AdS space–time.

The static circularly symmetric metric in Schwarzschild-like co-
ordinates, −∞ < t < ∞, 0 ≤ r < ∞, 0 ≤ θ ≤ 2π ≈ 0, is given by

ds2 = −
(

r2

�2
− M

)
dt2 +

(
r2

�2
− M

)−1

dr2 + r2dθ2, (1)

where the mass M is an integration constant and the cosmolog-
ical constant is given by � = −�−2 [8]. This metric corresponds 
to a family of extrema of the vacuum Einstein–Hilbert action in 
(2 + 1)-dimensions. In three dimensions, black holes and conical 
singularities are just different parts of the spectrum of pure gravity, 
with black holes occupying the mass range M > 0 and naked con-
ical singularities corresponding to 0 > M �= −1. The case M = −1
corresponds to AdS3.

The naked singularity is of a conical type at r = 0, with deficit/
excess angle � ≡ 2π(1 − √−M): for 0 > M > −1 there is an an-
gular defect, while for −1 > M there is an angular excess. For 
M → 0− the conical deficit approaches 2π and the NS under-
goes a topological transition: the cone becomes a cylinder. On the 
other side of the transition there is a black hole of vanishing mass 
M = 0+ . As shown in [10], conical singularities can also carry an-
gular momentum J , with M ≤ −| J |. In the extreme case M = −| J |, 
these spinning particles, like the extreme black holes counterparts 
(M = | J |), are BPS states, admitting a supersymmetric extension 
and enjoying perturbative stability [11].

The identification vector ξ in CAdS3 that produces the black 
hole has norm ξ · ξ = r2. Thus, the region where ξ is spacelike 
(r2 > 0) is defined as the BTZ space–time. The region where the 
vector is timelike is excised in order to avoid the closed timelike 
curves produced by the identification, generating a causal bound-
ary at r = 0. On the other hand, the conical singularity is produced 
by identifying with a rotation Killing vector η ≡ �∂θ , in AdS3, 
where θ is the azimuthal angle and � is the conical deficit around 
r = 0. This Killing vector is spacelike everywhere and therefore 
does not produce closed timelike curves. However, the identifi-
cation gives rise to a conical singularity at r = 0, the fixed point 
of η. The opposite of a conical defect, an angular excess, is also a 
NS with a “negative angular deficit”, which is not produced by an 
identification, but by an insertion of an angular wedge.

These features make conical singularities in AdS3 as acceptable 
as black holes. The question we wish to address, then, is, what 
happens in the geometry of a conical singularity when one in-
cludes vacuum fluctuations of some matter field: does the conical 
defect of the NS grow? What is the fate of the singularity? In this 
paper we investigate precisely this issue on a non-rotating, naked 
conical singularity space–time in (2 + 1)-dimensions with a nega-
tive cosmological constant and find that quantum effects create an 
event horizon surrounding a curvature singularity.

This paper is organized as follows. In Sec. 2, we calculate the 
renormalized expectation value of the stress–energy tensor for a 
scalar field in a NS space–time after reviewing the corresponding 
literature result in a black hole space–time. In Sec. 2.2 we ana-
lytically calculate the quantum-backreacted metric. We finish in 
Sec. 4 with a discussion of our results. We use units c = 1, G = 1/8
throughout.

2. Renormalized stress–energy tensor

In [12] it was shown that quantum fluctuations of a scalar field 
with periodic boundary conditions around a black hole make its 
horizon radius grow.1 Hence, a black hole will remain a black 
hole if the quantum fluctuations are included. Here we explore 
the effect of quantum fluctuations on a conical singularity: does 
the conical singularity remain naked, or do the quantum correc-
tions dress this singularity with an event horizon? Our analysis 
shows that the latter is the case. A similar question in flat (zero 
cosmological constant) (2 + 1)-dimensional space–time was raised 
by Souradeep and Sahni [15] and by Soleng [16], who showed that 
quantum effects on a conical singularity in flat space turn it into 
a (2 + 1)-dimensional ‘Schwarzschild-like’ space–time with grav-
itational attraction. In flat 2 + 1 space–time, an analogous ques-
tion was also addressed in the context of an accelerated C-metric 
in [17].

In order to address the above question, we consider the semi-
classical Einstein equations

Gμν − �−2 gμν = κ
〈
T̂μν

〉
ren

, (2)

where Gμν is the Einstein tensor for the metric gμν and κ = 8πG . 
These equations determine the perturbed metric via the renormal-

ized expectation value of the stress–energy tensor (RSET), 
〈
T̂μν

〉
ren

, 
of the matter field in some quantum state. We consider as quan-
tum source a conformally coupled scalar field without a mass pa-
rameter, whose (unrenormalized) expectation value of the stress–
energy tensor is given by [6,20]:

〈T̂μν(x)〉 = lim
x′→x

h̄

4

[
3∇x

μ∇x′
ν − gμν gαβ∇x

α∇x′
β

− ∇x
μ∇x

ν − 1

4�2
gμν

]
G(x, x′), (3)

where x and x′ are space–time points. Here, G(x, x′) is Hadamard’s 
elementary two-point function, i.e., the anticommutator 〈{�̂(x),
�̂(x′)}〉, where �̂(x) is the quantum scalar field. The quantum state 
of the field where the expectation values of the stress–energy ten-
sor and of the two-point function are evaluated is determined by 
imposing boundary conditions on the solutions of the field equa-
tions. In the present analysis, we choose for the two-point function 
G(x, x′) for the scalar field to satisfy ‘transparent’ boundary condi-
tions [12]. Imposing transparent boundary conditions corresponds 
to quantizing the scalar field using modes which are smooth on 
the entire Einstein static universe [18,19].

We first review the calculation of the RSET existing in the lit-
erature in the case of the black hole and afterwards we derive our 
new results in the case of the NS.

2.1. Black hole case (M > 0)

In the BTZ black hole case, the RSET in Eq. (3) when the scalar 
field satisfies ‘transparent’ boundary conditions takes the form [12,
20]:

κ〈T̂ μ
ν〉ren = lP

r3
F B H (M)diag(1,1,−2), (4)

in {t, r, θ} coordinates, where lP = h̄G is the Planck length and 
F B H (M) is a function that we give in Eq. (8) below. The two-
point function in the BTZ black hole case can be calculated via the 

1 This result was extended to non-conformal coupling for the massless black hole 
in [13] and to the four-dimensional planar massless black hole metric, in the con-
formal case, in [14].
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