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Abstract

Newtonian cosmological perturbation equations valid to full nonlinear order are well known in the literature. As-
suming the absence of the transverse-tracefree part of the metric, we present the general relativistic counterpart valid
to full nonlinear order. The relativistic equations are presented without taking the slicing (temporal gauge) condition.
The equations do have the proper Newtonian and first post-Newtonian limits. We also present the relativistic pressure
correction terms in the Newtonian hydrodynamic equations.

1. Introduction

Cosmological perturbation theory is an important the-
oretical tool in interpreting cosmological observations
like the two-dimensional temperature and polarization
anisotropies of the cosmic microwave background ra-
diation, the three-dimensional distribution and motions
of galaxies, distorted images of galaxies due to grav-
itational lensing, etc. The cosmological perturbation
equations are well known in the Newtonian context to
fully nonlinear order [1], whereas the counterparts in
Einstein’s gravity are known in linear [2, 3] and low-
order perturbation approximation [4]. Here, we present
a self-contained summary of the basic equations of re-
cently formulated fully nonlinear and exact cosmologi-
cal perturbation theory in Einstein’s gravity (Section 3).
Comparisons are made with the Newtonian (Sections 2
and 4) and the post-Newtonian equations (Section 5).
We also present the Newtonian equations in the pres-
ence of relativistic pressure (Section 6).

2. Newtonian Cosmological Perturbation Theory

Newtonian cosmological perturbation equations in
the spatially homogeneous and isotropic background
world model are [1]
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These are the mass conservation, the momentum con-
servation, and the Poisson’s equations, respectively; �̃,
p̃, v, and U are the mass density, the pressure, the pecu-
liar velocity, and the perturbed gravitational potential,
respectively; a(t) is the cosmic scale factor. We decom-
pose the mass density and pressure to the background
and perturbed parts as

�̃ = � + δ�, p̃ = p + δp. (4)

Evolution of the background world model is described
by equation (21) properly derived in Einstein’s gravity.

3. General Relativistic Cosmological Perturbation

Theory

We consider the scalar- and vector-type perturbations
in a flat background with the metric convention [3, 5]

ds2 = − (1 + 2α) c2dt2 − 2χicdtdxi

+a2 (1 + 2ϕ) δi jdxidx j, (5)

where α, ϕ and χi are functions of spacetime with arbi-
trary amplitudes; index of χi is raised and lowered by
δi j as the metric. We ignored the transverse-tracefree

Available online at www.sciencedirect.com

Nuclear Physics B (Proc. Suppl.) 246–247 (2014) 191–195

0920-5632/$ – see front matter © 2013 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/npbps

http://dx.doi.org/10.1016/j.nuclphysbps.2013.10.085

http://www.elsevier.com/locate/npbps
http://dx.doi.org/10.1016/j.nuclphysbps.2013.10.085
http://dx.doi.org/10.1016/j.nuclphysbps.2013.10.085
http://www.sciencedirect.com


(TT) part of the metric which is interpreted as the gravi-
tational waves to the linear perturbation order. The spa-
tial part of the metric is simple because, in addition to
ignoring the TT part, we already have taken the spa-
tial gauge condition without losing any generality to the
fully nonlinear order [3, 5].

We consider a fluid without anisotropic stress. The
energy momentum tensor is given as

T̃ab = �̃c2ũaũb + p̃ (̃gab + ũaũb) , (6)

where tildes indicate the covariant quantities; ũa is the
normalized fluid four-vector; �̃ includes the internal en-
ergy; in explicit presence of the internal energy we
should replace

�̃→ �̃
(
1 +

1
c2 Π̃

)
, (7)

where �̃ in the right-hand-side is the rest-mass density
[6]. We introduce the following definitions of fluid
three-velocities
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where γ̂ is the Lorentz factor
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andN is related to the lapse function in (19). The veloc-
ities v̂i and vi are more physically motivated ones [5]: v̂i

is the fluid three-velocity measured by the Eulerian ob-
server, and vi is the coordinate three-velocity of fluid;
the indices of vi, v̂i and vi are raised and lowered by δi j.

We can decompose χi and v̂i into the scalar- and
vector-type perturbations to the nonlinear order as [5]

χi = cχ,i + χ
(v)
i , v̂i ≡ −̂v,i + v̂(v)

i , (10)

with χ(v)i
,i ≡ 0 ≡ v̂(v)i

,i. We assign dimensions as

[a] = [̃gab] = [̃ua] = [α] = [ϕ] = [χi] = [̂vi/c] = 1,
[xi] = L, [χ] = T, [̂v/c] = L, [κ] = T−1,

[T̃ab] = [̃�c2] = [p̃], [G�̃] = T−2, (11)

where κ, the perturbed part of the trace of extrinsic cur-
vature, will be introduced below.

Here we present the complete set of fully nonlin-
ear perturbation equations without taking the temporal
gauge [5].

The definition of κ:
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The ADM energy constraint:
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The ADM momentum constraint:
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The trace of ADM propagation:
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