
Physics Letters B 757 (2016) 247–250

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

A cyclic universe approach to fine tuning

Stephon Alexander a,b, Sam Cormack a,∗, Marcelo Gleiser a

a Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, United States
b Department of Physics, Brown University, Providence, RI 02906, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2016
Received in revised form 7 March 2016
Accepted 30 March 2016
Available online 5 April 2016
Editor: M. Trodden

Keywords:
Fine-tuning
Cyclic universe
Standard Model couplings

We present a closed bouncing universe model where the value of coupling constants is set by the 
dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar 
field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one 
cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each 
cycle their time-dependence remains safely within present observational bounds for physically-motivated 
values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem 
based on string landscape scenarios.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A fundamental problem in particle physics and cosmology con-
cerns the specification of the constants of nature, in particular the 
19 free parameters of the Standard Model. It appears that these 
parameters are fine-tuned to allow for the formation of complex 
structure and eventually life [1]. While the coupling constants of 
our universe are not the only ones which could lead to such struc-
tures, only some subset of all possible coupling constants could do 
so. Possible solutions require new physics at high energies, as is 
the case with superstring theory [2]. For example, the Heterotic 
string gives rise to a four dimensional chiral gauge theory with 
many of the ingredients to realize the Standard Model. However, 
these four dimensional compactifications present a landscape of 
vacua and coupling constants. The dynamics of strings in the early 
universe were investigated in order to build models of string cos-
mology [3,4]. While it was the hope that string theory would uni-
vocally determine the measured couplings of the Standard Model, 
another approach emerged: the multiverse hypothesis [5,6].

Eternal inflation generically predicts that while inflation ended 
in our local Hubble radius, it continues in other regions, trigger-
ing the emergence of a plethora of causally-disconnected bubble 
universes. If each bubble universe is endowed with different cou-
pling constants – as generically realized in string theory – then 
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one can use anthropic reasoning to justify the values found within 
our cosmic horizon, given that we are here to ask the question. 
This marriage between eternal inflation and the landscape of pos-
sible perturbative string compactifications provides a resolution to 
the pressing question of fine tuning in modern physics. One can, 
however, wonder whether there are alternatives to the string land-
scape as a dynamical mechanism to determine the couplings of the 
Standard Model.

In this work, we propose a model to explain the apparent 
fine-tuning of coupling constants without recourse to the multi-
verse. We show that in a cyclic universe the fundamental constants 
can change pseudo-randomly from cycle to cycle. (We will qualify 
“pseudo” later.) Our current universe is then just the cycle which 
happens to contain a set of constants conducive to life. Cyclic uni-
verse models have previously been investigated as alternatives to 
inflation [7]. The idea that different string vacua could be explored 
in different cycles has been suggested in the context of explaining 
the value of the cosmological constant [8]. A recent development 
in the path towards well-behaved cyclic cosmologies is the pro-
posal of the anamorphic universe [9]. This approach solves the 
problem of anisotropic instabilities which often plague bouncing 
models. It also provides a mechanism for producing a nearly scale-
invariant spectrum of perturbations.

Here we will present a toy model for how a cyclic universe with 
pseudo-randomly changing constants might be realized. One key 
ingredient is to promote all coupling constants to moduli fields, 
and dynamically demonstrate two features: i. During each bounce 
the coupling constants vary pseudo-randomly; ii. During the ex-
pansion phase in each cycle the time variation of the coupling 
constants remains consistent with current observational bounds. 

http://dx.doi.org/10.1016/j.physletb.2016.03.082
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2016.03.082
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:stephon.alexander@dartmouth.edu
mailto:samuel.c.cormack.gr@dartmouth.edu
mailto:marcelo.gleiser@dartmouth.edu
http://dx.doi.org/10.1016/j.physletb.2016.03.082
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.03.082&domain=pdf


248 S. Alexander et al. / Physics Letters B 757 (2016) 247–250

For simplicity, we will focus on the gauge sector of the Standard 
Model and propose how to generalize to the Yukawa sector in the 
conclusion.

2. The model

The possibility of a cyclic universe with changing constants has 
been investigated before [10]. In that work, the bounce is caused 
by a free ghost scalar field whose kinetic energy is negative and 
scales as a−6, where a(t) is the FRW scale factor. The ghost dilaton 
field determines the value of a coupling constant, in this case the 
electromagnetic coupling constant. The universe is also assumed 
to be closed and to contain radiation. These ingredients allow for 
a series of closed universes separated by bounces. The value of 
the ghost field (and thus of the coupling) increases quickly and by 
the same amount during each bounce and then remains approxi-
mately constant during the following expansion/contraction cycle. 
The monotonically increasing coupling limits the feasibility of the 
model as a solution to the fine tuning problem. We note that while 
ghost fields remain problematic, we adopt the same phenomeno-
logical semi-classical approach as the authors in [10], which is to 
avoid its quantization. Indeed, ghost fields have found widespread 
applications in field theory and cosmology, for example as candi-
dates for phantom dark energy [11] and k-essence inflation [12]. 
Additionally, in the anamorphic universe approach mentioned in 
the Introduction, a kinetic term with the wrong sign can be ren-
dered ghost free in the presence of a non-minimal coupling to 
gravity [9]. We are currently investigating whether our model can 
be embedded in the anamorphic framework and plan to report on 
this in future work.

Our model incorporates a potential for the ghost field in a 
Friedmann universe. The action is

S =
∫

d4x
√−g

[
R

16πG
− 1

2

[
ε∂μψ∂μψ + 2V (ψ)

] + S g f

]
, (1)

with

S g f = −1

4

∑
i

1

(gi
Y M)2

F i
μν F μνi, (2)

where the coupling field for the i-th sector of the Standard Model 
is gi

Y M = gi
0eψi/M∗ , with gi

0 constant, and M∗ some mass scale, 
which from here on we will take to be the Planck scale Mp . 
For clarity, we will focus on only one gauge sector; our approach 
is easily generalized to other sectors. With our metric signature, 
(−, +, +, +), ε = +1 corresponds to a regular scalar field, while 
ε = −1 corresponds to a ghost field. We take the potential to be 
periodic but negative,

V (ψ) = −�4(1 + cos(ψ/ f )). (3)

The negativity of the potential ensures that there is no net cosmo-
logical constant during an expansion cycle, given that the negative 
kinetic energy density will drive the field to the potential max-
imum, where V (ψ) = 0. The energy density and pressure of the 
field ψ are

ρψ = ε

2
ψ̇2 − �4(1 + cos(ψ/ f )) (4)

Pψ = ε

2
ψ̇2 + �4(1 + cos(ψ/ f )) (5)

where f sets the energy scale as in axion-like models.
The equation of motion for ψ in an FRW spacetime is

ψ̈ + 3Hψ̇ − �4

f
sin(ψ/ f ) = 0, (6)

where H = ȧ/a. We assume that other relativistic degrees of free-
dom are modeled by a generic radiation term, so that the Fried-
mann equations are

H2 = 8πG

3

(
−1

2
ψ̇2 − �4(1 + cos(ψ/ f )) + ρr0

a4

)
− K

a2
; (7)

ä

a
= −8πG

3

(
−ψ̇2 + �4(1 + cos(ψ/ f )) + ρr0

a4

)
, (8)

where ρr0 is the radiation energy density at a = 1, K = ±1, 0 gives 
the spatial curvature and we have taken ε = −1.

The hope is that the field ψ will climb onto one of the potential 
maxima as the universe expands so the coupling constant that it 
determines will not change significantly. As the universe contracts, 
the ψ field accelerates. Its negative kinetic energy increases until 
it counteracts the radiation energy density and causes a bounce. At 
the bounce, the field is traveling quickly and can run across many 
maxima of the potential in both directions, resembling a sphaleron 
solution in electroweak baryogenesis. The precise location in the 
potential where it settles will set up new initial conditions for the 
next bounce. The field can then move in either direction the next 
time there is a bounce, possibly leading to a random walk among 
maxima over many cycles. (Our model can evade the Tolman prob-
lem that plagues cyclic universes by adding interaction terms that 
create entropy via the mechanism discovered in [13].)

We will work in conformal time as the bounces occur over a 
longer period of conformal time than cosmic time making numer-
ical solution easier. Writing Eqs. (6) and (8) in dimensionless form 
in terms of conformal time we have

	 ′′ = −2H	 ′ + a2β

f̃
sin(	/ f̃ ); (9)

a′′ = a′ 2

a
− 1

3a
+ a	 ′ 2

3
− a3β

3
(1 + cos(	/ f̃ )), (10)

where 	 = ψ/Mp , H = a′/a, β = �4/ρr0, f̃ = f /Mp , and the di-
mensionless conformal time is η̃ = (

√
ρr0/Mp)η, with primes de-

noting derivatives by η̃ and Mp = 1/
√

8πG . The first Friedmann 
equation becomes

H2 = −	 ′ 2

6
− a2β

3

(
1 + cos(	/ f̃ )

)
+ 1

3a2
− K M2

p

ρr0
. (11)

When β = 0, these equations reduce to the model of Barrow et al. 
[10] and we have exact solutions

	 ′ =
√

λ

a2
; (12)

a2(η) = 1

6

[
1 + √

1 − 6λ sin(η + η0)
]
, (13)

for constants λ and η0 depending on initial conditions. The nor-
malization of a is fixed by choosing the dimensionless curvature, 
K M2

p/ρr0 = +1. The maximum and minimum values of a are

amax,min = 1

6

(
1 ± √

1 − 6λ
)

. (14)

When β = 0 we can expand the solution about the bounce as

a(η) = amin

(
1 + 1

2

(
η

ηbounce

)2
)

, (15)

with the bounce occurring at η = 0. We can plug this into Eq. (10)
and set η = 0 to get

ηbounce = amin

√
3

1 − 6a2
min

≈ amin

amax
. (16)
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