
Physics Letters B 757 (2016) 505–509

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Time of flight of ultra-relativistic particles in a realistic Universe: 

A viable tool for fundamental physics?

G. Fanizza a,b,c, M. Gasperini a,b, G. Marozzi c,d,∗, G. Veneziano e,f,g

a Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari, Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
c Université de Genève, Département de Physique Théorique and CAP, 24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
d Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, CEP 22290-180, Rio de Janeiro, Brazil
e Collège de France, 11 Place M. Berthelot, 75005 Paris, France
f CERN, Theory Unit, Physics Department, CH-1211 Geneva 23, Switzerland
g Dipartimento di Fisica, Università di Roma La Sapienza, Rome, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 January 2016
Received in revised form 8 April 2016
Accepted 14 April 2016
Available online 18 April 2016
Editor: S. Dodelson

Keywords:
Null geodesics
Cosmological perturbation theory
Cosmic neutrinos

Including the metric fluctuations of a realistic cosmological geometry we reconsider an earlier suggestion 
that measuring the relative time-of-flight of ultra-relativistic particles can provide interesting constraints 
on fundamental cosmological and/or particle parameters. Using convenient properties of the geodetic 
light-cone coordinates we first compute, to leading order in the Lorentz factor and for a generic 
(inhomogeneous, anisotropic) space–time, the relative arrival times of two ultra-relativistic particles as 
a function of their masses and energies as well as of the details of the large-scale geometry. Remarkably, 
the result can be written as an integral over the unperturbed line-of-sight of a simple function of the 
local, inhomogeneous redshift. We then evaluate the irreducible scatter of the expected data-points due 
to first-order metric perturbations, and discuss, for an ideal source of ultra-relativistic particles, the 
resulting attainable precision on the determination of different physical parameters.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

It is well known that times of flight of ultra-relativistic (UR) 
particles received from a distant astrophysical source depend on 
the particle mass m, on the particle energy E measured by the 
observer, and on the details of the space–time geometry in which 
the particle trajectory is embedded.

The first pioneer study on this subject [1] has shown, in partic-
ular, that the observation of the relative arrival times of neutrinos 
of different energies emitted in Supernovae explosions can provide 
significant information on neutrino masses. In a later, complemen-
tary paper [2] it has been pointed out that measuring the relative 
arrival times of neutrinos and photons (or of different neutrino 
species), and knowing neutrino masses, energies, and the redshift 
of the source, one can in principle obtain numerical estimates of 
cosmological parameters (such as the present values of the Hubble 
and deceleration parameters).

The results presented in [1,2] are both based on the ho-
mogeneous and isotropic cosmology described by the standard 
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Friedman–Lemaître–Robertson–Walker (FLRW) metric. In this case 
the flight-time difference between two UR particles, emitted by the 
same source at time τs , can be expressed, to lowest order in the 
inverse Lorentz factor γ −1 = m/E , as [2]:

�τ = τ1 − τ2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ

1 + z(τ )
. (1)

Here τ is the proper time of the observer (with τo the arrival 
time at the observer of massless particles emitted by a source at 
time τs), m1,2 and E1,2 � m1,2 are energies and masses of the two 
particles as measured by the observer, and z is the cosmological 
redshift 1 + z = ao/a, where a is the scale factor of the FLRW ge-
ometry.

The Universe, however, is full of structure at different length 
scales. An interesting question is how Eq. (1) is affected by inho-
mogeneities when these are not assumed to be negligible. A priori 
one might expect that inhomogeneities could alter (1) by terms 
proportional to a lower power of m/E . More generally, such effects 
should be taken into account if one wants to connect precisely 
the data to cosmological and/or particle physics parameters. In this 
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Letter we exploit the remarkable properties of the so-called geode-
tic light-cone (GLC) coordinates [3] to answer the above questions. 
The basic simplification is that null geodesics are extremely simple 
to describe in GLC coordinates. UR (or nearly null) geodesics turn 
out to be sufficiently simple for the problem to be tractable.

We start by recalling the definition of GLC coordinates [3] and 
some already well known properties of them (see also [4] for a re-
cent discussion). They consist of a timelike coordinate τ , a null co-
ordinate w , and two angular coordinates θ̃a (a = 1, 2). The param-
eter τ can be identified with the proper time in the synchronous 
gauge and thus provides the four-velocity of a static geodesic ob-
server in the form uμ = −∂μτ . The GLC line-element depends on 
six arbitrary functions (ϒ, U a, γab = γba , a, b = 1, 2), and takes the 
form:

ds2 = ϒ2dw2− 2ϒdwdτ + γab(dθ̃a− U adw)(dθ̃b − U bdw), (2)

where γab and its inverse γ ab lower and raise the two-dimensional 
indices.

In the GLC coordinates the (interior of the) past light-cone of 
a given observer is defined by w = (<) wo = constant. Further-
more, null geodesics stay at fixed values of the angular coordinates 
θ̃a = θ̃a

o = constant, with θ̃a
o specifying the source direction at the 

observer position. Finally, the redshift z of a signal propagating 
along a light-cone, emitted at time τ by a comoving source and 
received at time τo by a comoving observer, is given by a simple 
generalization of the standard FLRW expression:

1 + z = ϒ(τo, wo, θ̃
a
o )/ϒ(τ , wo, θ̃

a
o ). (3)

The above properties of the GLC coordinates have already found 
several interesting applications [3–15]. In the present context we 
are interested in describing a family of almost null geodesics that 
start from a source lying on a past light-cone w = wo at a given z. 
The geodesics, however, reach the observer at later values of w , 
w = wi . The latter will depend on the Lorentz factor γi of the ith
particle which thus travels between the two light-cones w = wo
and w = wi .

We then write down the standard geodesic equation and mass-
shell constraint for a point particle of mass m, propagating in the 
metric (2). The latter condition reads

2(ϒτ̇ )ẇ − γab
˙̃
θa ˙̃

θb + 2Ua
˙̃
θa ẇ − (ϒ2 + U 2)ẇ2 = 1 , (4)

where a dot denotes differentiation with respect to the particle’s 
proper time ds = √−dxμdxν gμν . In order to make the extrapola-
tion to the massless limit smooth, let us rescale proper time by the 
Lorentz factor at the observer, γo . In that case the r.h.s. of Eq. (4)
becomes m2/E2 � 1, with E the energy measured by the observer. 
Our claim now is that there is a perturbative hierarchy among the 
quantities τ̇ , ẇ, ˙̃θa , with:

τ̇ ∼ γ 0,
˙̃
θa ∼ γ −1, ẇ ∼ γ −2 . (5)

We will check below that such an assumption is self consistent. 
Assuming it, we can rewrite (4) in the form:

2(ϒτ̇ )ẇ − γab
˙̃
θa ˙̃

θb + 2Ua
˙̃
θa ẇ + · · · = m2

E2
, (6)

where the dots represent next-to-next-to-leading contributions. 
Analogously, the geodesic equations read:

(ϒτ̇ ). = (
U aγab,τ − Ub,τ

)
τ̇ ˙̃
θb + . . . , (7)

ẅ = − 1

2ϒ
γab,τ

˙̃
θa ˙̃

θb − 1

ϒ

(
ϒ,a − Ua,τ

)
ẇ ˙̃

θa + . . . , (8)

¨̃
θa = −γ abγbc,τ τ̇

˙̃
θ c − γ ab (

ϒ,b − Ub,τ

)
τ̇ ẇ

−
(
γ ab	cd b + 1

2ϒ
U aγcd,τ

)
˙̃
θ c ˙̃

θd + . . . , (9)

where 	cd b = 1
2 (γcb,d + γdb,c − γcd,b). It is a straightforward 

(though tedious) exercise to verify that, to next to leading order 
included, the constraint (4) is preserved by the evolution equa-
tions (7), (8) and (9).

At the same level of approximation, we find immediately 
from (6) that

2ẇ =
m2

E2 + γ ab Ja Jb

ϒτ̇ + Ua
˙̃
θa

, (10)

where Ja ≡ γab
˙̃
θb . This equation is clearly consistent with (5)

since the numerator is of order γ −2 while the denominator is of 
O (1) with a relative correction O (γ −1). Another straightforward 
calculation shows that (10) gives the correct result for ẅ once 
Eqs. (7)–(9) are used. A useful input for this check is the small-
ness (O (γ −2)) of the first derivative of Ja

J̇a = 1

2

(
γbc,a − 1

ϒ
Uaγbc,τ

)
˙̃
θb ˙̃

θ c − (
ϒ,a − Ua,τ

)
τ̇ ẇ . (11)

The quantity we need to compute is dw/dτ = ẇ/τ̇ . From (10)
we obtain, to leading order in m/E ,

dw

dτ
= ϒ

2(ϒτ̇ )2

(
m2

E2
+ γ ab Ja Jb

)
. (12)

We now note that the time dependence of both ϒτ̇ and Ja ap-
pears only at higher order in m/E thanks to Eqs. (7) and (11), 
respectively. Evaluating ϒτ̇ at the observer gives simply ϒo ≡
ϒ(τo, wo, θ̃o) (because of the rescaling we adopted on the proper 
time). Integrating now (12) from the source to the observer (along 
the geodesic) gives:

wi − wo = 1

2

τo∫
τs

dτ
ϒ

ϒ2
o

(
m2

i

E2
i

+ γ ab Ja Jb) , (13)

where, to this order in γ −1, τi has been taken equal to τo . There 
are two further simplifications that we can apply to our final re-
sult (13). The first is that Ja is zero at the observer (and then also 
all along the geodesic, because of its approximate constancy) for a 
geodesic arriving exactly at the observer. The same is true for the 
quantity γ ab Ja Jb appearing in (13), since it can also be written 
as γab

˙̃
θa ˙̃

θb . The second observation is that the integral in Eq. (13)
can be taken along the unperturbed null geodesic (with constant 
θ̃a and w), since deviations from it are subleading.

Let us finally, compare two such geodesics starting from the 
same source at the same time τs . Their relative time delay can be 
easily obtained by subtracting two equations like (13) to yield:

w1 − w2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ
ϒ

ϒ2
o

(τ , wo, θ̃
a
o ) ,

τ1 − τ2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ

1 + z(τ , wo, θ̃
a
o )

, (14)

where we used Eq. (3) and �τ ≡ τ1 − τ2 = ϒo(w1 − w2) (see also 
[3]).

This is our main result showing that, to leading order in γ −1
1,2 , 

the arrival-time difference is very similar to the FLRW expression 
in Eq. (1), with the only difference that the redshift along the 
(massless) line-of-sight, being the exact redshift associated with a 
generic (inhomogeneous and anisotropic) geometry, is no longer 
just a function of time. The obtained geometric corrections, to 
leading order again, are the same for the two particles and thus 
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