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We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of 
triangle singularities. The single channel case was discussed long ago [1] where it was found that as a 
consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz 
plot projections. In the coupled channel case we find the same is true for the sum of intensities of all 
interacting channels. Unlike the single channel case, however, triangle singularities do remain visible in 
Dalitz plot projections of individual channels.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Under specific kinematic conditions [2], triangle diagrams [3]
have singularities that can mimic resonance poles. For this rea-
son partial wave peaks at energies that do not match the known 
hadron spectrum e.g. as expected from the quark model, have occa-
sionally been attributed to such effects. Most recently, for example, 
triangle singularities have been discussed in the context of the XYZ 
quarkonium peaks [4–11], the peak in the J PC = 1++[ρπ ] partial 
wave [12], i.e. the a1(1420) seen in the COMPASS data on pion 
diffractive dissociation [13], or the pentaquark signal [14,15] re-
ported by the LHCb collaboration [16]. Triangle singularities have a 
simple interpretation when the underlying amplitude is expressed 
as a dispersive integral. In Fig. 1 we show a triangle diagram de-
scribing decay of a quasi-stable particle D of mass MD to three 
stable particles, Aα , Bα , C through coupling to a pair of particles 
Aβ , Bβ . In the following, for simplicity, we ignore all particle spins 
and consider a case of two coupled two-body channels, (α, β =
1, 2). The triangle diagram can be expressed through a dispersive 
integral in which the on-shell amplitude describing t-channel ex-
change of a particle of mass λ is projected onto the s-channel 
partial wave and unitarized. The projected amplitude (in the next 
section denoted by bl,α(s)) has two of its four branch points mov-
ing as a function of λ [11]. For a range of (real) λ2, determined 
by the Coleman–Norton condition [2], one of these branch points, 
sT is located infinitesimally below the real s-axis and above the 
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s-channel threshold, sβ . This leads to a logarithmic branch point in 
the dispersive integral located on the second sheet just below the 
physical region (the physical region is defined as s + iε).

The triangle singularity is constrained by the two-body unitar-
ity. The Coleman–Norton condition requires λ ≥ B + C . Taking into 
account t-channel unitarity this implies that only resonances (and 
not stable particles) are involved. Due to the finite resonance width 
the singular point s = sT is shifted away from the physical region 
down the s-channel unitary cut and onto the second sheet.1 The 
analysis is similar to that of the standard Muskhelishvili–Omnes 
problem [17–19] with the only difference being that in the case 
considered here the left hand cut is actually located in the com-
plex s-plane and for narrow t-channel resonances may be close 
to the physical region, i.e. near the right hand cut. In other appli-
cations of triangle diagrams, however, two-body unitarity is not 
sufficient. For example in the analysis of the a1(1420) [12] the 
t-channel exchange of a stable kaon connects the f0(980)π and 
K ∗ K̄ , aka K K̄π three-particle states. In this cases it is necessary to 
invoke three-body unitary to constrain the triangle amplitude.

In the following we give a detailed discussion of the coupled 
Muskhelishvili–Omnes (MO) problem in presence of triangle sin-
gularities. In particular we determine what type of structures are 
to be expected in the Dalitz plot distributions. The single chan-
nel case was discussed in [1] and revisited in [20]. In particular, 
in [20] it was shown that inelasticities can invalidate the result 
derived for the single channel case [1] but the explicit formulas 
for the coupled channel amplitudes were not given. The reason 

1 If the singularity was located on the physical axis it would violate the s-channel 
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Fig. 1. Triangle diagram representing the process D → Aα BαC with a t-channel ex-
change of a pole at t = λ2 − iε with couple channel interactions in the s-channel.

why generalization to coupled channels is of interest is because, 
for example, the XYZ phenomena tend to occur in vicinity of sev-
eral open quasi-two-body channels.

2. Combining s, t , and u, channel isobars

We are interested in amplitudes describing a decay of a quasi-
stable particle D with mass MD to two channels, α = 1, 2 of 
three distinguishable particles Aα , Bα , C . The decay amplitude 
Aα(s, t, u), depends on the three Mandelstam invariants, which we 
define as s = (p A + pB)2, t = (pB + pC )2 and u = (p A + pC )2 and 
are kinematically constrained by s + t + u = ∑

i m2
i . Analyticity of 

the S-matrix implies that, besides the decay channel, the same 
amplitude describes each of the three two-to-two scattering pro-
cesses, i.e. the s-channel reaction D + C̄ → A + B , (bar denotes an 
antiparticle) as well as the t and u channel scattering. Therefore, 
the amplitude in the physical domain of the decay process can be 
obtained by analytical continuation of the amplitude from, say the 
s-channel scattering physical region. Partial wave expansion in the 
s-channel,

Aα(s, t, u) = 1

4π

∑
l

(2l + 1) fl,α(s)Pl(zs) (1)

with zs being cosine of scattering angle, converges in the s-channel 
physical region and in the decay region (|zs| < 1). In the s-channel 
physical region, complexity of the partial waves, fl,α(s) is deter-
mined by s-channel singularities. In the decay channel, however, 
in addition to the s-channel, t and u channel singularities are also 
physical and contribute to the complexity of the s-channel partial 
waves. It follows that in order to use Eq. (1) in the kinematical 
region of the decay process, the sum on r.h.s. has to be analyti-
cally continued. Therefore a finite set of s-channel partial waves 
cannot reproduce t or u-channel singularities, e.g. a resonance that 
appears inside the Dalitz plot. In the isobar model, in which a fi-
nite number of s-channel partial waves is considered, the omitted 
infinite number of waves is replaced by a finite number of t ad u
waves. The amplitude has a mixed form that includes partial waves 
(isobars) in the three channels simultaneously,

Aα(s, t, u) = A(s)(s) + A(t)(t) + A(u)(u), A(x)(x)

= 1

4π

Lmax∑
l=0

(2l + 1)a(x)
l,α(x)Pl(zx), x = s, t, u. (2)

We refer to the amplitudes a(x)
l,α(x) as the isobaric amplitudes in 

the x’th channel. The isobaric amplitudes, say in the s-channel, 
a(s)

l,α(s) contain the s-channel unitary cut and may also contain left 
hand cuts. To avoid double counting, however, the latter should 
not overlap with the cuts that originate from projections onto the 

Fig. 2. Location of cuts (dashed lines) of the amplitude b0,1(s) in the complex s
plane. The triangle singularity is due to the sT branch point located below the real 
s-axis and to the right of the channel-1 threshold, s1.

s-channel partial waves of the t and u-channel isobars. In the fol-
lowing we ignore any remaining, distant left hand cuts of the iso-
baric amplitudes. In a Dalitz plot analysis, the isobaric amplitudes 
are typically parametrized using energy dependent Breit–Wigner 
formulae but this can be easily generalized [21].

We examine implications of a triangle singularity present in the 
t-channel in one of the two channels, e.g. in D + Ā1 → B1 + C and 
ignore the u-channel exchange contributions, e.g. set A(u) = 0. For 
simplicity, we also assume that only S-wave (l = 0) interactions 
between pars Aα , Bα are strong and are given by a 2 × 2 set of 
unitary, S-wave amplitudes t0,αβ(s), satisfying,

�t0,αβ(s) = Imt0,αβ =
∑

γ =1,2

t∗
0,α,γ (s)ργ (s)t0,γ β(s). (3)

Here � denotes the right hand cut discontinuity, and ρα(s) is the 
channel phase space ρα(s) = λ(s, m2

Aα
, m2

Bα
)/2

√
s with λ being the 

triangle function. Projecting the r.h.s. of Eq. (2) onto the s-channel 
gives the partial wave expansion of the model,

fl,α(s) = al,α(s) + bl,α(s), (4)

with al,α(s) = a(s)
l,α(s) and nonzero only for l = 0. For all l’s,

bl,α(s) = 1

2

1∫
−1

dzs Pl(zs)

Lmax∑
l′=0

(2l′ + 1)a(t)
l′,α(t + iε)Pl′(zt). (5)

Under the integral, t and zt , the cosine of the t-channel scattering 
angle, are to be considered as functions of s and zs . The amplitude 
bl,α(s) is the s-channel projection of t channel exchanges and has 
complex singularities in the s-plane. The location of these singular-
ities is determined by unitarity in the t-channel. Unitarity leads to 
an amplitude that is analytical in the t-channel physical region i.e.
for t infinitesimally above the real axis. Note that there is no need 
to make MD complex since our amplitudes have no singularities in 
external masses.

Unitarity in the s-channel determines discontinuity of the 
fl,α(s), partial wave across the right hand cut. With the assump-
tion, that Aα and Bα interact strongly in the S-wave only we find,

� f0,α(s) = �a0,α(s) =
∑

β=1,2

t∗
0,αβρβ(s) f0,β(s),

� fl,α(s) = 0, for l > 0. (6)

The reason why it is � f and not Im f appears on the l.h.s. of 
the unitary equation is the decay kinematics. As discussed below 
Eq. (1), cross channel exchanges are physical in the direct channel 
and lead to additional (beyond the one determined by s-channel 
unitarity) complexity of the s-channel partial waves. As a func-
tion of s, the projected amplitudes, bl,α(s) have the left hand cut 
but do not have the right hand s-channel unitary cut. In particu-
lar, in presence of triangle singularities, when the Coleman–Norton 
conditions are met, [2], a portion of the left hand cut of bl,α(s) sur-
rounds the s-channel threshold branch point as illustrated in Fig. 2.
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