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1. Introduction

Theoretical investigation of electromagnetic e+e− pair produc-
tion in relativistic heavy-ion collisions goes back to the paper [1]
where the Born cross section of the process at high energy was 
calculated in the leading logarithmic approximation. Racah, in his 
remarkable paper [2], has calculated the high-energy asymptotics 
of the Born cross section up to power-suppressed terms in 1/γ
(γ is a Lorentz factor of the colliding nuclei). Recently there was 
a certain rise of the interest to this process connected with the 
functioning of heavy ion colliders, like RHIC and LHC, see Ref. [3]. 
In particular, a great attention has been paid to the investigation 
of the Coulomb corrections to the cross section at high energies 
[4–8].

Speaking of the total Born cross section, the problem of its cal-
culation is of a three-loop complexity level. Probably, this is the 
main reason why this quantity was not calculated exactly at ar-
bitrary velocities of the colliding nuclei. This is in contrast to the 
Born cross section of pair photoproduction in the field of an ion, 
where the total Born cross section is known exactly for any energy 
of the initial photon since Refs. [9,10]. Now that we have an essen-
tial progress in the multiloop calculations, we are in position to fill 
this gap and to calculate the total Born cross section of e+e− pair 
production in relativistic ion collisions.

The consideration of the present paper is based on the fol-
lowing approach. Using the optical theorem we express the total 
cross section via the sum of cut three-loop integrals. Then we ap-
ply the standard approach to multiloop calculations, based on the 

* Corresponding author.
E-mail addresses: r.n.lee@inp.nsk.su (R.N. Lee), k.t.mingulov@gmail.com

(K.T. Mingulov).

IBP reduction and differential equations for master integrals. The 
differential equations for the master integrals are first reduced to 
ε-form [11] using the algorithm of Ref. [12], and then solved re-
cursively up to the required order in ε . Thus, we obtain the total 
Born cross section exactly in the relative velocity β of the collid-
ing nuclei. Our result perfectly agrees with the celebrated result 
of Racah [2] in the limit of large relativistic factor. At small β we 
compare our result with estimate obtained in the recent paper [13]
and find a complete disagreement. In order to find the origin of 
the disagreement, we perform a straightforward calculation of the 
low-energy asymptotics of the cross section differential with re-
spect to the electron and positron momenta. The direct integration 
then reproduces our result obtained with the help of the differen-
tial equations.

2. Born cross section for the production of e+e− pair

Using optical theorem, the total cross section of the process 
Z1 Z2 → Z1 Z2e+e− can be written as

σ = 8 ImA
γ β

, (1)

where ImA is given by the sum of two cut diagrams depicted in 
Fig. 1, β is the relative velocity of the colliding nuclei, and γ =
[1 −β2]− 1

2 is the Lorentz factor. Contribution of both diagrams can 
be expresses in terms of the scalar integrals

I(n1, . . . ,n12) =
∫

ddl ddq1 ddq2

(2π)3d
θ(q0

1 − l0)θ(q0
2 + l0)

×
4∏

k=1

Im
1

(Dk + i0)nk

12∏
k=5

1

(Dk + i0)nk
,
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Fig. 1. Cut diagrams for the calculation of the total cross section of e+e− pair 
production in the collisions of relativistic nuclei. Cut thin line denotes the cut prop-
agator −2π iδ(p2 − m2)(p̂ + m) of the electron, cut double line denotes the cut 
propagator −2π iδ(2u · q) of a heavy particle, interaction vertex with the heavy par-
ticle is −iuμ (u = P/M is a four-velocity of the heavy particle).

D1 = −2q1 · u1 , D2 = −2q2 · u2 , D3 = (l − q1)
2 − 1 ,

D4 = (l + q2)
2 − 1 , D5 = l2 − 1 , D6 = (l − q1 + q2)

2 − 1 ,

D7 = q2
1 , D8 = q2

2 , D9 = −2l · u1 , D10 = −2l · u2 ,

D11 = −2q2 · u1 , D12 = −2q1 · u2 . (2)

Here u1 and u2 are the four-velocities of the nuclei, so that u1 ·
u2 = γ .

We proceed in the following way. First, we perform the IBP 
reduction of the cut integrals from the above topologies in d =
4 − 2ε . For this step we use LiteRed, Refs. [14,15]. We end up 
with 8 master integrals

J1 = I(1,1,1,1,0,0,0,1,0,0,0,0),

J2 = I(1,1,1,1,0,1,0,0,0,0,0,0),

J3 = I(1,1,1,1,0,2,0,0,0,0,0,0),

J4 = I(1,1,1,1,−1,1,0,0,0,0,0,0),

J5 = I(1,1,1,1,0,0,1,1,0,0,0,0),

J6 = I(1,1,1,1,1,1,0,0,0,0,0,0),

J7 = I(1,1,1,1,0,0,1,1,−1,−1,0,0),

J8 = I(1,1,1,1,1,1,0,0,−1,0,−1,0) .

Introducing the column-vector J = ( J1, . . . , J8)
T , we obtain the 

differential system

∂

∂γ
J = M(γ , ε)J , (3)

where M(γ , ε) is a matrix with entries being rational functions 
of both γ and ε . Passing to new variable, x = 1−β

1+β
, we apply 

the algorithm from Ref. [12] to reduce the differential system 
(3) to ε-form [11]. The differential system for the new basis ̃ J =
(̃ J1, . . . , ̃J8)

T has the form

∂

∂ x̃
J = ε

[
1

x
M0 + 1

x − 1
M1 + 1

x + 1
M2

]
J̃ , (4)

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 3 3 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 2 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

M1 = diag(2,0,2,2,−6,0,2,0) , (6)

M2 = diag(0,0,0,0,0,0,0,−2) . (7)

We obtain ε-expansion of ̃J = ∑
n εñJ(n) term-by-term using the 

formula

J̃(n+1) =
∫

dx

[
1

x
M0 + 1

x − 1
M1 + 1

x + 1
M2

]
J̃(n) + const (8)

and fixing the constant from small-β asymptotics. In order to cal-
culate this asymptotics, we use the method of expansion by re-
gions [16]. The only nontrivial boundary conditions come from 
O (β2ε−1) term in small-β asymptotics of J1 and J2:

J1 ∼ J2 ∼ −28ε−16π3ε−5
(ε)2
(2ε − 1)
(3ε − 2)


(4ε − 1)
β2ε−1 . (9)

As a result, the ε-expansions of both ̃J and J are expressed in terms 
of HPLs. Plugging the obtained expansions in the cross section ex-
pressed via ̃J we observe the cancellation of the terms O (εn) with 
n = −4, . . . , −1. The O (ε0) term gives us the result

σ = (Z1α)2(Z2α)2

πm2

{
− 1 − β2

12β2
L4 + 2

(
23β2 − 37

)
S3a

9β2

+ 2
(
11β2 − 25

)
S3b

9β2
− 26S2

9β

−
(
β6 + 217β4 − 135β2 + 45

)
L2

54β6

+ 5
(
67β4 − 48β2 + 18

)
L

27β5

− 2
(
78β4 − 35β2 + 15

)
9β4

}
, (10)

S3a = Li3

(
1 − β

1 + β

)
+ L Li2

(
1 − β

1 + β

)
− L2

2
log

(
2β

1 + β

)

− L3

12
− ζ3 ,

S3b = Li3

(
−1 − β

1 + β

)
+ L

2
Li2

(
−1 − β

1 + β

)
+ L3

24
− π2L

24
+ 3ζ3

4
,

S2 = Li2

(
−1 − β

1 + β

)
+ L log

(
β + 1

2

)
− L2

4
+ π2

12
,

L = log

(
1 + β

1 − β

)
.

2.1. Asymptotics

Given the expression (10), it is easy to calculate both high-
energy and low-energy asymptotics of the total cross section. For 
γ � 1 we have

σ = (Z1α)2(Z2α)2

πm2

{
28L3

0

27
− 178L2

0

27
+

(
370

27
+ 7π2

27

)
L0 + 7ζ3

9

− 13π2

54
− 116

9
− 1

γ 2

[
4L4

0

3
− 98L3

0

27
+ 188L2

0

27

−
(

172

27
+ 25π2

54

)
L0 − 73ζ3

18
+ 5π2

27
+ 43

27

]
+ . . .

}
, (11)

where L0 = ln(2γ ). The first line of Eq. (11) is the celebrated 
Racah’s result [2], and the second line is the first correction to 
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