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The relation of quarteting and clustering in atomic nuclei is discussed based on symmetry-considerations. 
This connection enables us to predict a complete high-energy cluster spectrum from the description of 
the low-energy quartet part. As an example the 28Si nucleus is considered, including its well-established 
ground-state region, the recently proposed superdeformed band, and the high-lying molecular reso-
nances.
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Most of the atomic nuclei are typical mesoscopic systems, 
which allow neither ab initio, nor statistical description. There-
fore, models play the crucial role in the understanding the nuclear 
structure. The fundamental structure models are based on differ-
ent physical pictures, e.g. shell, cluster or liquid drop, therefore, 
their interrelation is not trivial. Symmetry-considerations are very 
helpful in finding their connection, as well as in describing com-
plex spectra. In this letter we show how the nucleon-quarteting, 
which is a shell model phenomenon, is related to the clusteriza-
tion, i.e. to the appearance of a molecule-like configuration. We 
do so by applying a semimicroscopic algebraic description for both 
phenomena, which reveals a special symmetry, called multichan-
nel dynamical symmetry. This symmetry allows us to obtain a 
high-lying cluster spectrum from the quartet model fitted to the 
low-energy part. We do not know any other method of this ability.

The investigation of quarteting and clustering has a long history, 
and a large variety of models have been invented for their de-
scription. When the cluster is an alpha-particle, which is the most 
typical and best studied case, the two structures are obviously 
related to each other: in both cases the basic building block is 
composed of two protons and two neutrons. In the phenomenolog-
ical approaches, which do not respect the Pauli-exclusion principle, 
the wavefunction of the shell-like and molecule-like configurations 
(or those of two different cluster configurations) are orthogonal to 
each other. In fact, however, the antisymmetrization modifies the 
simple geometric picture, and as a result, the overlap can be finite, 
up to 100 percent. One needs microscopically constructed model 
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spaces for the study of this connection. (Whether the interactions 
are also microscopic or not, i.e. if the description is fully micro-
scopic, or semimicroscopic is less relevant in this respect.)

In what follows we apply semimicroscopic algebraic models for 
the description of both quarteting and clustering. This approach 
takes into account the exclusion principle, furthermore, due to its 
fully algebraic nature it has rather transparent symmetry prop-
erties. (We call a model fully algebraic when not only the ba-
sis states, but the physical operators as well are characterized by 
group representations.)

The semimicroscopic algebraic quartet model (SAQM) [1] is a 
symmetry-governed truncation of the no-core shell model [2], that 
describes the quartet excitations in a nucleus. A quartet is formed 
by two protons and two neutrons, which interact with each other 
very strongly, as a consequence of the short-range attractive forces 
between the nucleons inside a nucleus [3]. The interaction be-
tween the different quartets is weaker. In this approach the L–S 
coupling is applied, the model space has a spin–isospin sector, 
characterized by Wigner’s UST (4) group [4], and a space part de-
scribed by Elliott’s U(3) [5]. Four nucleons form a quartet [6] when 
their spin–isospin symmetry is {1, 1, 1, 1}, and their permutational 
symmetry is {4}. This definition allows two protons and two neu-
trons to form a quartet even if they sit in different shells. As a 
consequence the quartet model space incorporates 0, 1, 2, 3, 4, . . .
major shell excitations (in the language of the shell model), con-
trary to the original interpretation of [3], when the four nucleons 
had to occupy the same single-particle orbital, therefore, only 0,

4, 8, . . . major shell excitations could be described.
The model is fully algebraic, therefore, group theoretical meth-

ods can be applied in calculating the matrix elements. The opera-
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tors contain parameters to fit to the experimental data, that is why 
the model is called semimicroscopic: phenomenologic operators 
are combined with microscopic model space. Due to the quartet 
symmetry only a single {1, 1, 1, 1} UST (4) sector plays a role in the 
calculation of the physical quantities, thus the U(3) space-group 
and its subgroups are sufficient for characterizing the situation:

U (3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2)

|[n1,n2,n3], (λ,μ), K , L , M 〉. (1)

In Eq. (1) we have indicated also the representation labels of the 
groups which serve as quantum numbers of the basis states. Here 
n = n1 + n2 + n3 is the number of the oscillator quanta, and λ =
n1 − n2, μ = n2 − n3. The angular momentum content of a (λ, μ)

representation is as follows [5]: L = K , K + 1, . . . , K + max(λ,μ), 
K = min(λ,μ), min(λ,μ) − 2, . . . , 1 or 0, with the exception of 
K L = 0, for which L = max(λ,μ), max(λ,μ) − 2, . . . , 1 or 0. In the 
limiting case of the dynamical symmetry, when the Hamiltonian is 
expressed in terms of the invariant operators of this group-chain, 
an analytical solution is available for the energy-eigenvalue prob-
lem (an example is shown below).

The SAQM can be considered as an effective model in the sense 
of [7]: the bands of different quadrupole shapes are described by 
their lowest-grade U(3) irreducible representations (irreps) with-
out taking into account the giant-resonance excitations, built upon 
them, and the model parameters are renormalised for the subspace 
of the lowest U(3) irreps.

The semimicroscopic algebraic cluster model (SACM) [8], just like 
the other cluster models, classifies the relevant degrees of freedom 
of the nucleus into two categories: they belong either to the inter-
nal structure of the clusters, or to their relative motion. In other 
words: the description is based on a molecule-like picture. The in-
ternal structure of the clusters is handled in terms of Elliott’s shell 
model [5] with UST (4) ⊗ U(3) group structure (as discussed before-
hand). The relative motion is taken care of by the vibron model [9], 
which is an algebraic model of the dipole motion, and it has a U(3) 
basis, too. For a two-cluster-configuration this model has a group-
structure of UST

C1
(4) ⊗ UC1 (3) ⊗ UST

C2
(4) ⊗ UC2 (3) ⊗ UR(4).

The model space is constructed also in this case in a micro-
scopic way, i.e. the Pauli-forbidden states are excluded. It requires 
the truncation of the basis of the vibron model, as given by the 
Wildermuth-condition (see below for some specific examples). This 
condition determines the lowest-allowed quantum number of the 
relative motion, i.e. the allowed major shells of the (united) nu-
cleus. Furthermore, one needs to distinguish between the Pauli-
allowed and forbidden states within a major shell, too. Different 
methods can be applied to this purpose; e.g. by making an inter-
section with the U(3) shell model basis of the nucleus, which is 
constructed to be free from the forbidden states. The SACM is fully 
algebraic, and semimicroscopic in the sense discussed above.

When we are interested only in spin–isospin zero states of the 
nucleus (a typical problem in cluster studies, and being our case 
here, too), then only the space symmetries are relevant (apart from 
the construction of the model space). Considering, for the sake of 
simplicity, a binary cluster configuration the corresponding group-
chain is:

UC1(3) ⊗ UC2(3) ⊗ U R(4) ⊃ UC (3) ⊗ U R(3) ⊃
U (3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2). (2)

The basis defined by this chain is especially useful for treating the 
exclusion principle, since the U(3) generators commute with those 
of the permutation group, therefore, all the basis states of an irrep 
are either Pauli-allowed, or forbidden [10]. In particular, this U(3) 

basis allows us to pick up the allowed cluster states from the U(3) 
shell model basis (1).

A Hamiltonian corresponding to the dynamical symmetry of 
group-chain (2) reads as:

Ĥ = ĤC1 + ĤC2 + ĤU R (4) + ĤUC (3) + ĤU R (3) +
ĤU (3) + ĤSU(3) + ĤSO(3). (3)

We note here, that the first part

ĤCM = ĤC1 + ĤC2 + ĤU R (4) + ĤUC (3) + ĤU R (3) (4)

is an operator that corresponds to the pure cluster picture, while 
the second part

ĤSM = ĤU (3) + ĤSU(3) + ĤSO(3) (5)

is a shell model Hamiltonian (of the united nucleus).
The multichannel dynamical symmetry (MUSY) [11,12] connects 

different cluster configurations (including the shell model limit) in 
a nucleus. Here the word channel refers to the reaction channel, 
that defines the cluster configuration.

The simplest case is a two-channel symmetry connecting two 
different clusterizations. It holds, when both cluster configurations 
can be described by an U(3) dynamical symmetry and in addi-
tion a further symmetry connects them to each other. This latter 
symmetry is that of the Talmi–Moshinsky transformation. It acts 
in the pseudo space of the particle indices, or geometrically it 
corresponds to the transformations between the different sets of 
Jacobi-coordinates associated to the cluster configurations [13,12]. 
The ĤSM Hamiltonian of Eq. (5) is symmetric with respect to these 
transformations, therefore, it is invariant under the changes from 
one clusterization to the other. The cluster part of the Hamiltonian 
ĤCM is affected by the transformation from one configuration to 
the other, of course. Nevertheless, it may remain invariant, which 
is the case for simple operators, like the harmonic oscillator Hamil-
tonian, or the quadrupole operator [12]. Due to this symmetry of 
the quadrupole operator, the E2 transitions of different clusteri-
zations also coincide, when the MUSY holds, just like the energy 
eigenvalues of the symmetric Hamiltonians [12].

The MUSY is a composite symmetry of a composite system. Its 
logical structure is somewhat similar to that of the dynamical su-
persymmetry (SUSY) of nuclear spectroscopy. In the SUSY case the 
system has two components, a bosonic and a fermionic one, each 
of them showing a dynamical symmetry, and a further symme-
try connects them to each other. The connecting symmetry is that 
of the supertransformations which change bosons into fermions or 
vice versa. In the MUSY case the system has two (or more) dif-
ferent clusterizations, each of them having dynamical symmetries 
which are connected to each other by the symmetry of the (Talmi–
Moshinsky) transformations that change from one configuration to 
the other.

When the multichannel dynamical symmetry holds then the 
spectra of different clusterizations are related to each other by very 
strong constraints. The MUSY provides us with a unified multiplet 
structure of different cluster configurations, furthermore the corre-
sponding energies and E2 transitions coincide exactly. Of course, it 
cannot be decided a priori whether the MUSY holds or not, rather 
one can suppose the symmetry and compare its consequences with 
the experimental data. In what follows we derive the spectra of 
two clusterizations from the quartet spectrum of the 28Si nucleus.

The 28Si nucleus provides us with many reasons to be chosen as 
an illustrative example. i) It has a well-established band-structure 
in the low-energy region, and to several bands SU(3) quantum 
numbers could be associated as a joint conclusion of experimen-
tal and theoretical investigations [14]. ii) More recently a new 
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