
Physics Letters B 757 (2016) 405–411

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Derivative self-interactions for a massive vector field

Jose Beltrán Jiménez a, Lavinia Heisenberg b,∗
a CPT, Aix Marseille Université, UMR 7332, 13288 Marseille, France
b Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2016
Received in revised form 5 April 2016
Accepted 6 April 2016
Available online 11 April 2016
Editor: M. Trodden

In this work we revisit the construction of theories for a massive vector field with derivative self-
interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We 
start from the decoupling limit by constructing healthy interactions containing second derivatives of the 
Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be 
straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction 
of the interactions by using the Levi–Civita tensors. Both approaches lead to a finite family of allowed 
derivative self-interactions for the Proca field. This construction allows us to show that some higher 
order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley–
Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a 
compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian 
for electromagnetism. Finally, we generalize our results for a curved background and give the necessary 
non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of 
gravity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the cosmic acceleration of the universe trig-
gered a plethora of attempts to unveil the physical mechanism 
behind it. The simplest explanation comes about in the form of a 
cosmological constant, but its required small value, although not 
inconsistent, seriously challenges our theoretical understanding. 
A natural approach to these somewhat related problems, namely 
the cosmological constant and the cosmic acceleration, is resorting 
to infrared (IR) modifications of gravity. Since a gravitational the-
ory based on a massless spin 2 particle needs to coincide with 
General Relativity (GR) at low energies, modifications of gravity 
on large distances inevitably lead to the introduction of additional 
degrees of freedom (dof). In numerous cases, IR modifications of 
gravity eventually boil down to one additional scalar mode. In the 
simplest scenarios, it corresponds to a canonical scalar field with 
a given potential and some couplings to matter. However, in more 
interesting frameworks, like e.g. the DGP model [1], the additional 
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scalar field gives rise to a novel class of theories characterized by 
the presence of second order derivative interactions of the scalar 
field, while the field equations remain of second order, avoiding 
that way the rise of Ostrogradski instabilities. The properties of 
this scalar field were then generalized in [2] resulting in the class 
of Galileon theories. These theories are remarkable on their own 
right because of a number of features, namely: their field equa-
tions are explicitly second order even though second derivatives 
of the fields appear in the action, there is only a finite number of 
them and are invariant (up to a total derivative) under a constant 
shift of the field and its gradient, with important consequences for 
their naturalness under quantum corrections [3]. Interestingly, they 
have been shown to arise in a natural manner in IR modifications 
of gravity and played an important role in the construction of a 
consistent theory of massive gravity [4,5]. Moreover, although they 
modify gravity on large scales, there is a higher scale where new 
effects come in which is known as Vainshtein radius [6]. This is 
in fact a crucial property for the viability of these theories since 
the scalar field is screened below this scale.1 The generalization of 

1 It is worth mentioning that for certain sub-classes of theories, the existence of a 
Vainshtein screening is not sufficient to avoid conflict with local gravity tests [7,8].
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these theories to include curvature effects led to the (re-)discovery 
of Horndeski actions as the most general actions for a scalar-tensor 
theory with second order equations of motion [9]. There exists also 
an interesting link between massive gravity and these interactions 
[10]. The Horndeski interactions are however not the most general 
theories propagating the 2 dof’s of the graviton plus 1 additional 
dof in a scalar-tensor theory [11].

The construction of Galileon and/or Horndeski actions roots in 
the same structure found in the Lovelock invariants built by using 
the symmetry properties of the Levi–Civita tensor and the Bianchi 
identities. This is actually the reason why the Galileons are typi-
cally found in modifications of gravity in higher dimensional se-
tups including Gauss–Bonnet or higher order Lovelock terms [12]. 
This line of reasoning was used in [13] to build Galileon-like la-
grangians for arbitrary p-forms. There it was argued that Galilean 
interactions are not possible for massless spin 1 fields in 4 dimen-
sions. A more exhaustive classification of Galilean interactions for 
arbitrary p-forms and in arbitrary dimension has been recently 
performed in [14], where it was confirmed the non-existence of 
massless vector Galileons in 4 dimensions. This no-go theorem 
does not extend however to the case of massive spin 1 fields 
where it is possible to build non-gauge invariant derivative self-
interactions of the vector field while keeping the desired 3 prop-
agating degrees of freedom. The key property of these theories is 
that the Stueckelberg field has the class of Galileon/Horndeski in-
teractions so it only propagates one dof. Interestingly, this type 
of vector-tensor theories also arise naturally in some modifica-
tions of gravity with Gauss–Bonnet terms in Weyl geometries [15,
16]. A classification of derivative vector self-interactions keeping 
3 propagating degrees of freedom was carried out in [17]. A sub-
class of these with a coupling of the vector field to the Einstein 
tensor had been considered in [18] as a potential mechanism to 
generate cosmic magnetic fields. The case where the longitudinal 
model has Galilean self-interactions was considered in [19] and its 
covariantised version in [17,19,20]. Recently, it has been claimed 
in [21] that new derivative self-interactions different from those 
already found in literature exist and opened the possibility for an 
infinite series of such terms. This would mean that the massive 
vector field case is crucially different from its scalar counterpart 
where Galilean (or, more generally, Horndeski) terms form a finite 
set of lagrangians. In this note, we revisit this result and argue that 
the vector field case does resemble the scalar case and a finite se-
ries of terms (in a sense that will be made more explicit below) 
are allowed.

The paper is organized as follows. In the next section we start 
from the decoupling limit and construct general interactions for 
the Stueckelberg field containing up to its second derivatives. From 
this we will then construct theories beyond the decoupling limit. 
In Section 3 we will proceed to a systematic construction of the 
interactions for the massive vector field directly in the unitary 
gauge by making use of the Levi–Civita tensor. Along with this 
construction we will show that the higher order derivative self-
interactions introduced in [21] vanish in 4 dimensions due to a 
non-trivial cancellation provided by the Cayley–Hamilton theorem. 
We will then show how the interactions can be nicely rewritten in 
a determinantal form, which allows to interpret the derivative self-
interactions as a generalization of Born-Infeld electromagnetism. 
Finally, we consider the case of a curved spacetime and give the 
counter-terms that are needed to avoid additional propagating po-
larizations when gravity is turned on.

2. Decoupling limit of generalized Proca

Historically, the decoupling limit has proven to be advantageous 
in order to construct healthy theories. Its power lies in its ability to 

isolate a given degree of freedom and capture its relevant interac-
tions. For instance, in the case of interacting gauge fields, this limit 
allows to decouple the longitudinal modes together with their self-
interactions and study the processes in which they are involved 
without caring about the remaining transverse modes. The very 
same idea helped with the construction of a non-linear covariant 
theory of massive gravity without introducing the Boulware-Deser 
ghost [22]. In a bottom-up approach, the decoupling limit allowed 
to isolate the problematic interactions of the helicity-0 mode of 
the graviton and construct them in a healthy way [4]. Once the 
decoupling limit was under control, it was possible to extend it to 
a fully non-linear theory. In this section we shall follow an analo-
gous course of action for the case of a Proca field with derivative 
self-interactions.

Similarly to the massive gravity case, the non-gauge invariant 
derivative self-interactions of the vector field might introduce an 
additional ghostly degree of freedom. In order to be more pre-
cise, let us resort to the Stueckelberg trick in order to restore 
the explicitly broken gauge invariance of a Proca field with mass 
M2 so that we replace Aμ → Aμ + ∂μπ/M with π the Stueck-
elberg field, which will play the role of the longitudinal mode of 
the massive vector field. If we (carefully) take the limit when the 
mass goes to zero we can completely decouple π and study that 
sector separately. In the simplest case of a purely massive vec-
tor field with U (1) couplings to matter, this limit simply leads to 
usual electromagnetism with the longitudinal mode being a com-
pletely decoupled free massless scalar field. Things are different 
when considering more general potentials or non-abelian gauge 
fields, which lead to non-linear sigma models.

It is the Stueckelberg field which we need to keep under con-
trol and make sure that it only propagates the one dof associated 
to the longitudinal polarization. Since this field does not contribute 
to the gauge invariant field strength tensor Fμν = ∂μ Aν − ∂ν Aμ , 
terms built out of Fμν will not introduce the undesired mode. 
Similarly, since purely potential terms of the form V (A2) will only 
introduce first derivatives of the Stueckelberg, they will not add a 
fourth polarization either. However, when considering non-gauge 
invariant derivative terms like (∂μ Aμ)2, the Stueckelberg field will 
generally acquire higher order derivatives and, thus, an additional 
mode suffering from the Ostrogradski instability will be present. 
This pathology can however be bypassed by properly constructing 
such terms. To that end, we will require the following conditions:

• The pure Stueckelberg field sector belongs to the Galileon/Horn-
deski class of lagrangians. Due to the origin of π , only the 
subclass with shift symmetry can be present.

• The couplings of second derivatives of π to the transverse 
modes must also lead to second order field equations.

The first condition will be relevant for the leading order in the 
decoupling limit with interactions purely constructed out of the 
Stueckelberg field. The second condition will be important for the 
terms with non-trivial couplings between the transverse modes 
and the Stueckelberg field. More explicitly, we will consider la-
grangians depending on the vector field Aμ and its first deriva-
tives ∂μ Aν . Since we want to explicitly separate the derivative 
interactions with non-trivial contributions for π , we will express 
the lagrangian as L = L(Aμ, Fμν, Sμν) with Sμν = ∂μ Aν + ∂ν Aμ . 
Moreover, we will introduce a given scaling for each object so that 
the corrections with respect to the pure Proca action admit an ex-
pansion of the form

L ∼
∑
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