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We have performed precision measurements of the double-spin virtual-photon asymmetry A1 on the 
neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer 
and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 
0.277 ≤ x ≤ 0.548 at an average Q 2 value of 3.078 (GeV/c)2, doubling the available high-precision 
neutron data in this x range. We have combined our results with world data on proton targets to 
make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions 
for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous 
observation of an An

1 zero crossing near x = 0.5. We find no evidence of a transition to a positive slope 
in (�d + �d̄)/(d + d̄) up to x = 0.548.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Ever since the European Muon Collaboration determined that 
the quark-spin contribution was insufficient to account for the spin 
of the proton [1,2], the origin of the nucleon spin has been an 
open puzzle; see Ref. [3] for a recent review. Recently, studies of 
polarized proton–proton collisions have found evidence for a non-
zero contribution from the gluon spin [4,5] and for a significantly 
positive polarization of ū quarks [6]. The possible contribution of 
parton orbital angular momentum (OAM) is also under investiga-
tion. In the valence quark region, combining spin-structure data 
obtained in polarized-lepton scattering on protons and neutrons 
allows the separation of contributions from up and down quarks 
and permits a sensitive test of several theoretical models.

In deep inelastic scattering (DIS), nucleon structure is con-
ventionally parameterized by the unpolarized structure functions 
F1(x, Q 2) and F2(x, Q 2), and by the polarized structure functions 
g1(x, Q 2) and g2(x, Q 2), where Q 2 is the negative square of the 
four-momentum transferred in the scattering interaction and x is 
the Bjorken scaling variable, which at leading order in the infinite-
momentum frame equals the fraction of the nucleon momentum 
carried by the struck quark. One useful probe of the nucleon spin 
structure is the asymmetry A1 = (σ1/2 −σ3/2)/(σ1/2 +σ3/2), where 
σ1/2(3/2) is the cross section of virtual photoabsorption on the 
nucleon for a total spin projection of 1/2 (3/2) along the virtual-
photon momentum direction. At finite Q 2, this asymmetry may be 
expressed in terms of the nucleon structure functions as [7]

A1(x, Q 2) =
[

g1(x, Q 2) − γ 2 g2(x, Q 2)
]
/F1(x, Q 2), (1)

where γ 2 = 4M2x2c2/Q 2 and M is the nucleon mass. For large 
Q 2, γ 2 � 1 and A1(x) ≈ g1(x)/F1(x); since g1 and F1 have the 
same Q 2 evolution at leading order and at next to leading or-
der (NLO) [8–10], A1 may be approximated as a function of x
alone. Through Eq. (1), measurements of A1 on proton and neu-
tron targets also allow extraction of the flavor-separated ratios 
of polarized to unpolarized parton distribution functions (PDFs), 
(�q(x) + �q̄(x))/(q(x) + q̄(x)). Here, q(x) = q↑(x) + q↓(x) and 
�q(x) = q↑(x) − q↓(x), where q↑(↓)(x) is the probability of finding 
the quark q with a given value of x and with spin (anti)parallel to 
that of the nucleon. This Letter reports a high-precision measure-
ment of the neutron A1, An

1, in a kinematic range where theoretical 
predictions begin to diverge.

A variety of theoretical approaches predict that An
1 → 1 as 

x → 1. Calculations in the relativistic constituent quark model 
(RCQM), for example, generally assume that SU(6) symmetry is 
broken via a color hyperfine interaction between quarks, lowering 

the energy of spectator-quark pairs in a spin singlet state relative 
to those in a spin triplet state and increasing the probability that, 
at high x, the struck quark carries the nucleon spin [11].

In perturbative quantum chromodynamics (pQCD), valid at 
large x and large Q 2 where the coupling of gluons to the struck 
quark is small, the leading-order assumption that the valence 
quarks have no OAM leads to the same conclusion about the spin 
of the struck quark [12,13]. Parameterizations of the world data, 
in the context of pQCD models, have been made at NLO both with 
and without this assumption of hadron helicity conservation. The 
LSS (BBS) parameterization [14] is a classic example of the for-
mer; Avakian et al. [15] later extended that parameterization to 
explicitly include Fock states with nonzero quark OAM. Both pa-
rameterizations enforce An

1(x → 0) < 0 and An
1(x → 1) → 1 and 

predict limx→1(�d + �d̄)/(d + d̄) = 1. However, the OAM-inclusive 
parameterization predicts that (�d + �d̄)/(d + d̄), which is nega-
tive at low x, crosses zero at significantly higher x than predicted 
by LSS (BBS). Recently, the Jefferson Lab Angular Momentum (JAM) 
Collaboration performed a global NLO analysis at Q 2 = 1 (GeV/c)2

to produce a new parameterization [16], and then systematically 
studied the effects of various input assumptions [17]. Without 
enforcing hadron helicity conservation, JAM found that the ratio 
(�d + �d̄)/(d + d̄) remains negative across all x; regardless of this 
initial assumption, the existing world data can be fit approximately 
equally well with or without explicit OAM terms of the form given 
by Ref. [15]. The scarcity of precise DIS neutron data above x ≈ 0.4, 
combined with the absence of such data points for x � 0.6, leaves 
the pQCD parameterizations remarkably unconstrained.

The statistical model treats the nucleon as a gas of mass-
less partons at thermal equilibrium, using both chirality and DIS 
data to constrain the thermodynamical potential of each parton 
species. At a moderate Q 2 value of 4 (GeV/c)2, An

1(x → 1) →
0.6 · �u(x)/u(x) ∼ 0.46 [18]. Statistical-model predictions are thus 
in conflict with hadron helicity conservation. A modified Nambu–
Jona-Lasinio (NJL) model, including both scalar and axial-vector 
diquark channels, yields a similar prediction for An

1 as x → 1 [19]. 
A recent approach based on Dyson–Schwinger equations (DSE) pre-
dicts An

1(x = 1) = 0.34 in a contact-interaction framework, and 0.17 
in a more realistic framework in which the dressed-quark mass is 
permitted to depend on momentum [20]; the latter prediction is 
significantly smaller than either the statistical or NJL prediction at 
x = 1. However, existing DIS data do not extend to high enough x
to definitively favor one model over another.

Measurements of the virtual-photon asymmetry A1 can be 
made via doubly polarized electron–nucleon scattering. With both 
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