Contents lists available at ScienceDirect ### Physics Letters B www.elsevier.com/locate/physletb ## Precision measurements of A_1^n in the deep inelastic regime The Jefferson Lab Hall A Collaboration ``` D.S. Parno a,b,*, D. Flay c,d, M. Posik C, K. Allada e, W. Armstrong C, T. Averett f, F. Benmokhtar^a, W. Bertozzi^g, A. Camsonne^h, M. Cananⁱ, G.D. Cates^j, C. Chen^k, J.-P. Chen^h, S. Choi^l, E. Chudakov^h, F. Cusanno^{m,n,1}, M.M. Dalton^j, W. Deconinck^g, C.W. de Jager^{h,j}, X. Deng^j, A. Deur^h, C. Dutta^e, L. El Fassi^{o,p}, G.B. Franklin^a, M. Friend^a, H. Gao^q, F. Garibaldi^m, S. Gilad^g, R. Gilman^{h,o}, O. Glamazdin^r, S. Golgeⁱ, J. Gomez^h, L. Guo^s, O. Hansen^h, D.W. Higinbotham^h, T. Holmstrom^t, J. Huang^g, C. Hyde^{i,u}, H.F. Ibrahim ^v, X. Jiang ^{o,s}, G. Jin ^j, J. Katich ^f, A. Kelleher ^f, A. Kolarkar ^e, W. Korsch ^e, G. Kumbartzki ^o, J.J. LeRose ^h, R. Lindgren ^j, N. Liyanage ^j, E. Long ^w, A. Lukhanin ^c, V. Mamyan^a, D. McNulty^d, Z.-E. Meziani^c, R. Michaels^h, M. Mihovilovič^x, B. Moffit^{g,h}, N. Muangma^g, S. Nanda^h, A. Narayan^p, V. Nelyubin^j, B. Norum^j, Nuruzzaman^p, Y. Oh^l, J.C. Peng^y, X. Qian ^{q,z}, Y. Qiang ^{q,h}, A. Rakhman ^{aa}, S. Riordan ^{j,d}, A. Saha ^{h,1}, B. Sawatzky ^{c,h}, M.H. Shabestari^j, A. Shahinyan^{ab}, S. Širca^{ac,x}, P. Solvignon^{ad,h}, R. Subedi^j, V. Sulkosky^{g,h}, W.A. Tobias^j, W. Troth^t, D. Wang^j, Y. Wang^y, B. Wojtsekhowski^h, X. Yan^{ae}, H. Yao^{c,f}, Y. Ye^{ae}, Z. Ye^k, L. Yuan^k, X. Zhan^g, Y. Zhang^{af}, Y.-W. Zhang^{af,o}, B. Zhao^f, X. Zheng^j ``` - ^a Carnegie Mellon University, Pittsburgh, PA 15213, United States - b Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, University of Washington, Seattle, WA 98195, United States - ^c Temple University, Philadelphia, PA 19122, United States - ^d University of Massachusetts, Amherst, MA 01003, United States - ^e University of Kentucky, Lexington, KY 40506, United States - f College of William and Mary, Williamsburg, VA 23187, United States - ^g Massachusetts Institute of Technology, Cambridge, MA 02139, United States - ^h Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, United States - ¹ Old Dominion University, Norfolk, VA 23529, United States - ^j University of Virginia, Charlottesville, VA 22904, United States - k Hampton University, Hampton, VA 23187, United States - ¹ Seoul National University, Seoul 151-742, South Korea - ^m INFN, Sezione di Roma, I-00161 Rome, Italy - ⁿ Istituto Superiore di Sanità, I-00161 Rome, Italy - ^o Rutgers, The State University of New Jersey, Piscataway, NJ 08855, United States - ^p Mississippi State University, MS 39762, United States - ^q Duke University, Durham, NC 27708, United States - ^T Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine - ^s Los Alamos National Laboratory, Los Alamos, NM 87545, United States - ^t Longwood University, Farmville, VA 23909, United States - ^u Université Blaise Pascal/IN2P3, F-63177 Aubière, France - v Cairo University, Giza 12613, Egypt - w Kent State University, Kent, OH 44242, United States - ^x Jožef Stefan Institute, Ljubljana, Slovenia - ^y University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States - ² Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, United States - aa Syracuse University, Syracuse, NY 13244, United States - ^{ab} Yerevan Physics Institute, Yerevan 375036, Armenia Corresponding author at: Center for Experimental Nuclear Physics and Astrophysics, Box 354290, University of Washington, Seattle, WA 98195, United States. Tel.: +1 206 543 4035; fax: +1 206 685 4634. E-mail address: dparno@uw.edu (D.S. Parno). - ac University of Ljubljana, SI-1000 Ljubljana, Slovenia - ^{ad} Argonne National Lab, Argonne, IL 60439, United States - ae University of Science and Technology of China, Hefei 230026, People's Republic of China - af Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China #### ARTICLE INFO #### Article history: Received 11 December 2014 Received in revised form 18 March 2015 Accepted 31 March 2015 Available online 7 April 2015 Editor: D.F. Geesaman Keywords: Spin structure functions Nucleon structure Parton distribution functions Polarized electron scattering #### ABSTRACT We have performed precision measurements of the double-spin virtual-photon asymmetry A_1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ^3He target. Our data cover a wide kinematic range $0.277 \leq x \leq 0.548$ at an average Q^2 value of 3.078 (GeV/c) 2 , doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of an A_1^n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in $(\Delta d + \Delta \bar{d})/(d + \bar{d})$ up to x=0.548. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³. Ever since the European Muon Collaboration determined that the quark-spin contribution was insufficient to account for the spin of the proton [1,2], the origin of the nucleon spin has been an open puzzle; see Ref. [3] for a recent review. Recently, studies of polarized proton–proton collisions have found evidence for a nonzero contribution from the gluon spin [4,5] and for a significantly positive polarization of \bar{u} quarks [6]. The possible contribution of parton orbital angular momentum (OAM) is also under investigation. In the valence quark region, combining spin-structure data obtained in polarized-lepton scattering on protons and neutrons allows the separation of contributions from up and down quarks and permits a sensitive test of several theoretical models. In deep inelastic scattering (DIS), nucleon structure is conventionally parameterized by the unpolarized structure functions $F_1(x,Q^2)$ and $F_2(x,Q^2)$, and by the polarized structure functions $g_1(x,Q^2)$ and $g_2(x,Q^2)$, where Q^2 is the negative square of the four-momentum transferred in the scattering interaction and x is the Bjorken scaling variable, which at leading order in the infinite-momentum frame equals the fraction of the nucleon momentum carried by the struck quark. One useful probe of the nucleon spin structure is the asymmetry $A_1 = (\sigma_{1/2} - \sigma_{3/2})/(\sigma_{1/2} + \sigma_{3/2})$, where $\sigma_{1/2(3/2)}$ is the cross section of virtual photoabsorption on the nucleon for a total spin projection of 1/2 (3/2) along the virtual-photon momentum direction. At finite Q^2 , this asymmetry may be expressed in terms of the nucleon structure functions as [7] $$A_1(x, Q^2) = \left[g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)\right] / F_1(x, Q^2), \tag{1}$$ where $\gamma^2=4M^2x^2c^2/Q^2$ and M is the nucleon mass. For large Q^2 , $\gamma^2\ll 1$ and $A_1(x)\approx g_1(x)/F_1(x)$; since g_1 and F_1 have the same Q^2 evolution at leading order and at next to leading order (NLO) [8–10], A_1 may be approximated as a function of x alone. Through Eq. (1), measurements of A_1 on proton and neutron targets also allow extraction of the flavor-separated ratios of polarized to unpolarized parton distribution functions (PDFs), $(\Delta q(x)+\Delta \bar{q}(x))/(q(x)+\bar{q}(x))$. Here, $q(x)=q^\uparrow(x)+q^\downarrow(x)$ and $\Delta q(x)=q^\uparrow(x)-q^\downarrow(x)$, where $q^{\uparrow(\downarrow)}(x)$ is the probability of finding the quark q with a given value of x and with spin (anti)parallel to that of the nucleon. This Letter reports a high-precision measurement of the neutron A_1 , A_1^n , in a kinematic range where theoretical predictions begin to diverge. A variety of theoretical approaches predict that $A_1^n \to 1$ as $x \to 1$. Calculations in the relativistic constituent quark model (RCQM), for example, generally assume that SU(6) symmetry is broken via a color hyperfine interaction between quarks, lowering the energy of spectator-quark pairs in a spin singlet state relative to those in a spin triplet state and increasing the probability that, at high x, the struck quark carries the nucleon spin [11]. In perturbative quantum chromodynamics (pQCD), valid at large x and large Q^2 where the coupling of gluons to the struck quark is small, the leading-order assumption that the valence quarks have no OAM leads to the same conclusion about the spin of the struck quark [12,13]. Parameterizations of the world data, in the context of pQCD models, have been made at NLO both with and without this assumption of hadron helicity conservation. The LSS (BBS) parameterization [14] is a classic example of the former; Avakian et al. [15] later extended that parameterization to explicitly include Fock states with nonzero quark OAM. Both parameterizations enforce $A_1^n(x \to 0) < 0$ and $A_1^n(x \to 1) \to 1$ and predict $\lim_{x\to 1} (\Delta d + \Delta \bar{d})/(d + \bar{d}) = 1$. However, the OAM-inclusive parameterization predicts that $(\Delta d + \Delta \bar{d})/(d + \bar{d})$, which is negative at low x, crosses zero at significantly higher x than predicted by LSS (BBS). Recently, the Jefferson Lab Angular Momentum (JAM) Collaboration performed a global NLO analysis at $Q^2 = 1 (GeV/c)^2$ to produce a new parameterization [16], and then systematically studied the effects of various input assumptions [17]. Without enforcing hadron helicity conservation, JAM found that the ratio $(\Delta d + \Delta \bar{d})/(d + \bar{d})$ remains negative across all x; regardless of this initial assumption, the existing world data can be fit approximately equally well with or without explicit OAM terms of the form given by Ref. [15]. The scarcity of precise DIS neutron data above $x \approx 0.4$, combined with the absence of such data points for $x \ge 0.6$, leaves the pQCD parameterizations remarkably unconstrained. The statistical model treats the nucleon as a gas of massless partons at thermal equilibrium, using both chirality and DIS data to constrain the thermodynamical potential of each parton species. At a moderate Q^2 value of 4 (GeV/c)², $A_1^n(x \to 1) \to 0.6 \cdot \Delta u(x)/u(x) \sim 0.46$ [18]. Statistical-model predictions are thus in conflict with hadron helicity conservation. A modified Nambu-Jona-Lasinio (NJL) model, including both scalar and axial-vector diquark channels, yields a similar prediction for A_1^n as $x \to 1$ [19]. A recent approach based on Dyson–Schwinger equations (DSE) predicts $A_1^n(x=1)=0.34$ in a contact-interaction framework, and 0.17 in a more realistic framework in which the dressed-quark mass is permitted to depend on momentum [20]; the latter prediction is significantly smaller than either the statistical or NJL prediction at x=1. However, existing DIS data do not extend to high enough x to definitively favor one model over another. Measurements of the virtual-photon asymmetry A_1 can be made via doubly polarized electron–nucleon scattering. With both ### Download English Version: # https://daneshyari.com/en/article/1848920 Download Persian Version: https://daneshyari.com/article/1848920 Daneshyari.com