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Integration by parts reduction is a standard component of most modern multi-loop calculations in 
quantum field theory. We present a novel strategy constructed to overcome the limitations of currently 
available reduction programs based on Laporta’s algorithm. The key idea is to construct algebraic 
identities from numerical samples obtained from reductions over finite fields. We expect the method 
to be highly amenable to parallelization, show a low memory footprint during the reduction step, and 
allow for significantly better run-times.
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Over the past few decades, it has often been the case that new 
developments in computer technology have sparked advances in 
theoretical high energy particle physics. This has been especially 
true with regard to the application of integration by parts (IBP) 
identities in d dimensional spacetime to the reduction of multi-
loop scalar Feynman integrals in quantum field theory to a basis 
of irreducible master integrals [1,2]. From the MINCER program 
written long ago for the reduction of three-loop propagator-type 
integrals [3], to the more recent general-purpose algorithm intro-
duced by Laporta [4], automated approaches to integration by parts 
reduction have long been favored because of the enormous amount 
of algebra involved. This is also reflected in the fact that, in re-
cent years, quite a few dedicated IBP solvers have been written 
and made publicly available [5–10].

While many integral reductions of phenomenological interest 
have been successfully performed in the past, improvements are 
required for the calculation of many precision observables relevant 
to the physics program of the Large Hadron Collider. For exam-
ple, solving all of the IBP relations relevant for the calculation of 
the two-loop virtual corrections to the pp → tt̄ cross section in 
Quantum Chromodynamics will take currently available reduction 
programs at least several weeks to run on a desktop computer. 
In order to handle future problems, which are likely to be signif-
icantly more demanding due to either the presence of additional 
kinematical scales or additional loop integrations, it is worth un-
derstanding what makes IBP solving computationally expensive.

Let us point out three major performance shortcomings of stan-
dard IBP solvers based on Laporta’s algorithm. First of all, for a 
process on the edge of feasibility, the algorithm will typically re-
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quire finding a reduced row echelon form for a sparse system of 
millions of linear equations with coefficients that are polynomial 
in the available independent ratios of dimensionful scales and the 
spacetime dimension. Solving such linear systems using standard 
techniques (e.g. variants of Gaussian elimination) leads to coeffi-
cients which are rational functions of high degree at intermediate 
stages of the calculation [11]. Depending on the exact order of 
the reduction steps, the coefficient complexity and the number of 
nonzero coefficients per row vector may grow dramatically.

This type of phenomenon is commonly referred to in the lit-
erature as intermediate expression swell and leads to performance 
problems since the expressions become expensive to manipulate 
and, en masse, even to store in memory. For IBP reductions, a 
standard operation performed on the coefficients to recognize ze-
ros and to simplify the resulting expressions is the computation 
of greatest common divisors, which becomes increasingly expen-
sive as the coefficients get more and more complicated. To get a 
feeling for how severe spurious intermediate expression swell can 
become during an IBP reduction, one can mask a single relation 
between integrals while performing some set of integral reduc-
tions. Carrying out this experiment, we observed cases where, as 
a consequence of the masking, the reduction result grew by more 
than an order of magnitude in size. While heuristic rules to avoid 
expression swell can be found in available IBP solvers, there is ob-
vious motivation for improvement.

Second, a large fraction of the identities computed in the con-
ventional approach reduce auxiliary integrals which do not occur 
in the actual calculation of interest (e.g. some component of a 
cross section). However, considering identities involving auxiliary 
integrals is unavoidable for a complete reduction of the required 
integrals. Clearly, it is of considerable interest to avoid expensive 
computations for purely auxiliary quantities whenever possible.
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Third, in an effort to improve upon the run-time requirements 
of the Laporta algorithm, it is natural to attempt a dedicated par-
allelization of the reduction procedure. Among the publicly avail-
able IBP solvers, Reduze 2 [9] is distinguished by the fact that 
it was designed to be run on a computer cluster. While the opti-
mal number of cores is problem specific, it is often the case that 
one observes a significant speed-up only when utilizing up to at 
most a few tens of cores. Modern computer clusters available at 
research institutions and laboratories may provide a considerably 
larger number of cores which can therefore not be fully exploited.

In this Letter, we describe a new approach to automated in-
tegration by parts reduction based on well-known ideas in com-
putational mathematics which should significantly ameliorate the 
issues discussed above which one typically encounters in practi-
cal applications. Roughly speaking, the strategy is to sample over 
many distinct prime fields for most of the calculation and then, at 
the end, reconstruct the symbolic rational coefficients for the iden-
tities of interest by combining the samples together. Remarkably, 
the requisite mathematical techniques are simple, well-tested, and 
can be found in expository form in many modern computer alge-
bra textbooks (e.g. [11]). Our work is similar in spirit to that of 
Kant [12] and, in fact, we expect that his ICE package will serve 
as a useful preprocessor for IBP relations. The key idea is to sys-
tematically avoid manipulating polynomials or rational functions 
at intermediate stages of the calculation in an effort to avoid inter-
mediate expression swell.

The outline of this Letter is as follows. First, we review the re-
construction of rational numbers from samples obtained over finite 
fields. Next, we discuss how this can be exploited for fast rational 
linear system solving. It is possible to work entirely with sam-
ples over small (machine-sized) prime fields, since the information 
from samples over distinct fields can be combined by using the 
well-known Chinese remainder algorithm. Finally, we promote the 
rational reconstruction method to the case of univariate rational 
functions through interpolating polynomials and discuss various 
generalizations and improvements.

Let us begin with a brief review of the mathematical prereq-
uisites. At the heart of everything is the extended Euclidean algo-
rithm (EEA). This algorithm computes the greatest common divisor 
(GCD) of two integers, a and b, together with their associated Bé-
zout coefficients, integers s and t such that

GCD(a,b) = s a + t b . (1)

Initially, one begins with the triples (g0, s0, t0) = (a, 1, 0) and 
(g1, s1, t1) = (b, 0, 1) such that |a| > |b|. Then one iterates accord-
ing to

qi = gi−1 quo gi (2)

gi+1 = gi−1 − qi gi (3)

si+1 = si−1 − qi si (4)

ti+1 = ti−1 − qiti , (5)

where gi−1 quo gi denotes the integer quotient of gi−1 by gi (i.e.
gi−1 = giqi + ri for some remainder ri ). The modulus of gi de-
creases according to 0 ≤ |gi+1| < |gi | until the algorithm termi-
nates with gk+1 = 0 for some index k. At this point, gk = GCD(a, b), 
sk = s, and tk = t . It should be emphasized that the version of the 
EEA presented above is not guaranteed to be optimal for all in-
tegers a and b; it will certainly be the case, for example, that a 
different variant performs better for a and b with asymptotically 
large absolute values [11]. Throughout this Letter, we will often 
choose to describe classical versions of algorithms for the sake 
of clarity and then point out various optimizations or alternatives 
which may prove useful.

It turns out that the EEA has a number of useful applications. 
For example, it is possible to use the EEA to define multiplicative 
inverses in prime fields, Z/pZ (hereafter we use the shorthand 
Zp). If we apply the EEA to b and p, we find that

1 = s p + t b (6)

for some s and t . By definition, this implies that 1 ≡ t b mod p
and we are therefore led to the definition

1

b
≡ t mod p . (7)

If we denote the canonical homomorphism from Z onto Zp by 
φp(z) = z mod p, then (7) implies that the p-homomorphic image
of a rational number a/b can be consistently written as

φp(a/b) = φp(a)φp(1/b) . (8)

The natural question that arises now is whether one can go the 
other way under certain conditions and reconstruct a/b from its 
p-homomorphic image. Actually, for our purposes, we must first 
generalize and replace the prime p with a possibly non-prime 
positive integer m such that GCD(m, b) = 1. Obviously, for the re-
construction to be possible, m must be chosen large enough. An 
algorithm to reconstruct a/b from its m-homomorphic image was 
first provided long ago by Wang [13] without proof and then sub-
sequently understood in [14]. More recently, this so-called rational 
reconstruction (RR) algorithm has been improved upon and gen-
eralized in a number of important directions ([15] and [16] are 
of particular interest to us). Before commenting on the state-of-
the-art, it is worth saying a few words about how the classical RR 
algorithm works.

Given two integers m and u fulfilling u ≡ a/b mod m we want 
to reconstruct the rational number a/b. The crucial observation is 
that, when one applies the EEA to m and u, one obtains an identity 
of the form

gi = si m + ti u (9)

at every step of the algorithm because the gi , si , and ti are com-
puted via exactly the same linear recurrence. Now, if m and the ti
have no common factors, φm(gi/ti) = u by definition and it there-
fore follows that the integers gi and ti obtained at each step of the 
EEA will all furnish a rational number, gi/ti , which is congruent 
to u modulo m. However, one iteration j turns out to be special 
and allows one to recover a/b from g j/t j . Note that, in practice, 
m will be chosen to be a (relatively large) machine-sized prime 
or a product of such primes. This choice for m has the desirable 
consequence that m and ti are almost always relatively prime; ex-
ceptional cases are very rare and, in any case, easily dealt with 
[17].

We now describe RR as originally envisioned in [13]. Employing 
the EEA for a generic m as discussed in the previous paragraph, it 
can be shown [14] that the RR problem will be well-posed when 
the modulus m is greater than 2 max{a2, b2}. In this situation, the 
unique solution to the RR problem is given by

a

b
= g j

t j
, (10)

where the number g j is distinguished by the fact that it is the 
first gi in the EEA to violate the inequality |gi | > �√m/2�. In prac-
tical applications, one will usually not know the values |a| and |b|
in advance and therefore one needs to veto reconstructions which 
satisfy either |t j | > �√m/2� or GCD(t j, g j) 	= 1 since, by design, 
the conditions |g j | ≤ �√m/2�, |t j | ≤ �√m/2�, and GCD(t j, g j) = 1
hold when the RR procedure succeeds. The point is that, for suf-
ficiently large m, all steps of the EEA still yield integers gi and ti
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