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The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution 
in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to 
radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman 
graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by 
double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions 
which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an 
evolution equation which is non-local in rapidity. This equation can be equivalently rewritten in local
form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. 
We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical 
studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in 
both stabilizing and slowing down the evolution.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is by now well established that the Balitsky–JIMWLK hi-
erarchy1 [1–7] and its mean field approximation known as the 
Balitsky–Kovchegov (BK) equation [8] govern the high-energy evo-
lution of scattering amplitudes in presence of non-linear effects 
(multiple scattering and gluon saturation) responsible for unita-
rization. Some of the most remarkable recent developments in that 
context refer to the first calculations of the next-to-leading order 
(NLO) corrections [9–11] to the B–JIMWLK and BK equations. These 
new developments parallel and extend previous efforts, towards 
the end of nineties, which established the NLO version [12–17]
of the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [18–20] — 
the linearized version of the BK equation which applies so long 
as the scattering is weak. Although the BFKL and B–JIMWLK equa-
tions are based on a common evolution mechanism, they differ in 
the way how they treat the scattering problem: the BFKL equation 
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1 The acronym JIMWLK stands for Jalilian-Marian, Iancu, McLerran, Weigert, 
Leonidov and Kovner.

deals only with single scattering, as appropriate for a dilute target, 
whereas the B–JIMWLK hierarchy includes the interplay between 
evolution and multiple scatterings. The former is usually written 
in transverse momentum space, as an equation for the uninte-
grated gluon distribution, while the latter is formulated in terms of 
transverse coordinates (better suited for implementing the eikonal 
approximation) and keeps trace of the multiple scattering of the 
individual partons in the projectile — each of them represented by 
a Wilson line. Such differences explain the difficulty to adapt to 
the NLO B–JIMWLK evolution the ‘collinear resummations’ origi-
nally developed in the context of NLO BFKL [21–25], which aim at 
improving the convergence of the perturbative expansion for the 
BFKL kernel.

The collinear resummations refer to perturbative corrections, 
starting at NLO, which are enhanced by large, single or dou-
ble, transverse logarithms. Without a proper resummation, which, 
strictly speaking, goes beyond the order-by-order expansion of the 
BFKL kernel, these large logarithms deprive the NLO BFKL formal-
ism of its predictive power.

There is no reason to expect this lack-of-convergence prob-
lem to be attenuated by the non-linear terms in the B–JIMWLK 
equations: indeed, the ‘collinear’ corrections arise from regions in 
phase-space where the scattering is weak and the non-linear ef-
fects are negligible. This was anticipated in a semi-analytic study 
[26] and later on confirmed by the numerical observation that 
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adding a unitarity constraint (in the form of a ‘saturation bound-
ary’) to the NLO BFKL equation does not help improving the sta-
bility of the solution [27]. Very recently, while our work was being 
completed, this has been corroborated by a numerical study [28]
of the NLO BK equation [9]: the numerical solution turns out to 
be unstable (the scattering amplitude decreases with increasing 
energy and can even turn negative) for the physically interesting 
initial conditions. As also shown in Ref. [28], this instability can 
be traced back to a large NLO correction to the BFKL kernel en-
hanced by a double transverse logarithm. This kind of correction, 
which can be associated with the choice of the reference scale in 
the energy logarithm, is well understood at BFKL level, where it is 
successfully resummed to all orders by the schemes proposed in 
Refs. [22–25]. It is our main objective in this paper to propose a 
similar resummation at the level of the BK equation.

More precisely, our goals are twofold: first, we would like to 
unambiguously identify the origin of the double-collinear loga-
rithms in Feynman graphs to all orders and devise a method for 
their resummation; second, we would like to reformulate this re-
summation as a change in the kernel of the BK equation, which 
is energy independent. Unlike the corresponding method in the 
context of NLO BFKL, where the resummation is generally imple-
mented in double Mellin space2 [22,23], our resummation will be 
directly implemented in transverse coordinate space, in order to be 
consistent with the non-linear structure of the BK equation.

Concerning the first objective above, our main finding is that 
the double-collinear logs arise due to a reduction in the longitu-
dinal phase-space for the high-energy evolution, as introduced by 
the condition that successive gluon emissions be strictly ordered 
in lifetime. The interplay between this ‘kinematical constraint’ and 
the double transverse logarithms has already been recognized in 
the literature [22,29–31] (see [32] for a recent discussion and more 
references), but we are not aware of any systematic derivation of 
this prescription from Feynman graphs. To emphasize that this is 
indeed non-trivial, we notice that double collinear logs are also 
generated by diagrams with anti-time ordering, but they mutually 
cancel when all such graphs are summed together (see the discus-
sion in Section 3 below). This observation helps understanding the 
peculiar way how the double transverse logs arise in the context 
of the NLO BK calculation in [9]. The main outcome of this dia-
grammatic analysis is Eq. (17), which governs the evolution in the 
double-logarithmic approximation (DLA): it resums to all orders 
the perturbative corrections in which each power of the coupling 
is accompanied by a double logarithm (either energy-collinear, or 
double collinear).

Eq. (17) however is non-local in ‘rapidity’ (the logarithm of the 
longitudinal momentum, which is our evolution variable), so it 
does not fully match our goals for a collinearly-improved evolution 
equation.3 To cope with that, in Section 4 we demonstrate that 
the non-local Eq. (17) can be reformulated in a local form, mod-
ulo an analytic continuation and a reshuffling of the perturbative 
expansion. The new, local, Eq. (30) involves an ‘improved’ kernel 
and (for consistency) a modified initial condition, which both re-
sum double-collinear logs to all orders.

It is then straightforward to extend this resummation to the 
BFKL and BK equations and thus obtain the collinearly-improved 
BK equation (32), which is our main result in this paper. It is 

2 Note however some similarity between our strategy and that proposed in [25], 
where the ω-shift in Mellin space [22,23] has been approximately reformulated as 
an improvement of the BFKL kernel in transverse momentum space.

3 Collinearly-improved versions of the BK equation which are non-local in rapid-
ity have been proposed too in the literature [32,33], but they suffer from some 
shortcomings, concerning either the systematics of the resummation (for the ap-
proach in [33]), or its feasibility in practice (for [32]).

furthermore possible to promote this result to full NLL accuracy, 
by adding the remaining NLO BK corrections from Ref. [9]. Notice 
however that the NLO terms include single transverse logarithms, 
which may require additional resummations, as was already the 
case in the context of NLO BFKL [22–24].

Finally, in Section 5 we present the first numerical studies of 
the resummed BK equation (32). These studies clearly demonstrate 
the role of the resummation in both stabilizing and significantly 
slowing down the evolution: the saturation exponent extracted 
from the numerical solution is smaller by, roughly, a factor of two 
than in the absence of the resummation.

2. The double-logarithmic limit of the BFKL equation

In order to fix the notations and for comparison with the more 
refined results that we shall later obtain, it is instructive to recall 
the derivation of the ‘naive DLA’, by which we mean the version 
of this approximation which neglects the time-ordering of succes-
sive gluon emissions, from the leading-order (LO) BFKL equation 
[18–20]. The LO BFKL equation resums the perturbative corrections 
in which each power of the QCD coupling ᾱs ≡ αs Nc/π , assumed 
to be fixed and small, is accompanied by the energy logarithm 
Y ≡ ln(s/Q 2

0 ) (the ‘rapidity’), with s the center-of-mass energy 
squared and Q 0 the characteristic transverse scale of the target.4

In this leading-log approximation (LLA), valid when ᾱsY � 1, it is 
consistent to treat the scattering and the evolution in the eikonal 
approximation. The LO BFKL equation can then be written as the 
linearized version of the BK equation [1,8], i.e. as an equation for 
the high-energy evolution of the scattering amplitude Tx y(Y ) of a 
quark–antiquark dipole, with a quark leg at transverse coordinate x
and an antiquark leg at transverse coordinate y , which undergoes 
weak scattering off a generic target (a nucleus, or a ‘shockwave’):

∂Tx y(Y )

∂Y
= ᾱs

2π

∫
d2zMx yz

[
Txz(Y ) + T z y(Y ) − Tx y(Y )

]
. (1)

This equation involves the ‘dipole’ version of the BFKL kernel,

Mx yz ≡ (x − y)2

(x − z)2(z − y)2
, (2)

which describes the emission of a soft gluon with transverse co-
ordinate z by either the quark or the antiquark leg of the dipole, 
followed by its reabsorption (see Fig. 1). In the limit of a large 
number of colors Nc → ∞, the positive quantity (ᾱs/2π)Mx yzd2z
can be interpreted [34] as the differential probability for the split-
ting of the original color dipole (x, y) into a pair of dipoles (x, z)
and (z, y). The first two terms within the square brackets, Txz
and T z y , are the ‘real’ terms describing the scattering of the daugh-
ter dipoles, whereas the last one, −Tx y , is the ‘virtual’ term ex-
pressing the reduction in the probability for the parent dipole to 
survive at the time of scattering.

Eq. (1) is valid so long as the scattering is weak, T � 1, for 
all the dipoles. For a dense target, such as a large nucleus, this is 
indeed the case provided all dipoles look small on the scale set 
by the target saturation momentum5 Q 0: (x − y)2 Q 2

0 � 1, etc. In 
this regime, the integration over z in the r.h.s. of Eq. (1) becomes 

4 This scale Q 0 is assumed to be hard enough for perturbation theory to apply: 
Q 2

0 � �2
QCD. E.g., if the target is a small dipole, then 1/Q 0 is the size of that dipole. 

If the target is a large nucleus described by the McLerran–Venugopalan (MV) model 
[35], then Q 0 is the target saturation momentum in a frame where the projectile 
carries most of the total energy.

5 In the full BK equation, which includes unitarity corrections, this condition is 
eventually replaced by r2 Q 2

s (Y ) � 1, where Q s(Y ) is the saturation momentum of 
the target, which obeys Q s(0) = Q 0 and increases with Y .
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