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The Cornell potential is under certain conditions converted to an effective potential which is suggestive of 
the bag model once all spin degrees of freedom of a quark driven by this static field have been integrated 
out. We argue for the view that such conditions arise from a quark Q moving in a relativistic mean field 
generated by two quarks Q ′ and Q ′′, which together with Q form a nucleon Q Q ′ Q ′′, and the nucleon 
Q Q ′ Q ′′ is a constituent of some nucleus. This view opens up a new avenue of attack on the problem of 
saturation of the nuclear force.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Among many phenomenological models of quarks confined to
hadrons, two have enjoyed popularity for years: the nonrelativis-
tic potential model with the Cornell potential [1,2], and the bag 
model [3–6]. The pictorial renditions of these models are differ-
ent. They refer respectively to an elastic string with quarks fixed 
at its ends, and a spherical cavity in which free valence quarks are 
permanently held. The bag states of high angular momentum are 
likely to deform into rotating tubes with quarks at the ends and 
a flux of color fields connecting them. Such a structure resembles 
a “string” with a constant energy per unit length [7]. However, the 
converse, that is, whether a spherical bag could arise from a rel-
ativistic string, is not evident. A central idea of this paper is that 
the string is under certain conditions converted to the bag.

The Cornell potential was proposed in an effort to determine 
the quarkonium levels through the use of the Schrödinger equa-
tion. The basic assumption is that the quarkonium properties are 
adequately described by the degrees of freedom of a heavy quark 
Q and its own antiquark Q̄ whose motions in quarkonia are non-
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relativistic.1 The main concern there is with the low-lying spec-
trum of the Hamiltonian

H = 2m + p2

2m
+ V Cornell(r) , (1)

where m is the quark mass (we use units in which h̄ = 1, c = 1), 
and V Cornell is the static quark–antiquark potential

V Cornell(r) = −αs

r
+ σ r . (2)

The first term in (2) arises from the single gluon exchange be-
tween Q and Q̄ . This term is responsible for short-distance ef-
fects, and is known as the Coulomb part of the Cornell potential. 
The second term is responsible for the long-distance confinement 
effects. This linearly rising term is associated with a string-like 
configuration of the gluon field between Q and Q̄ [8–11]. The 
parameter σ , the so-called string tension, is common to both char-
monium and bottomonium states. It can be obtained from fits to 
lattice calculations of Wilson loops exhibiting the heavy quark po-
tential (2) at the leading order in 1/m expansion [12]. The standard 
assumption is that the flavor dependence of the level structure 
stems from m and αs . The parameters that follow from fitting 

1 The speed of charm quarks is estimated to be about 0.3 times the speed of light 
for charmonia, and that of bottom quarks is about 0.1 times the speed of light for 
bottomonia.
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the masses of the 11 well established c̄c states are αs = 0.7281, 
σ = 0.1425 GeV2 [13].

It transpires that this model allows a “relativized” extension to 
mesons composed of one heavy and one light quark [14], and that 
all mesons – from the π to the ϒ – can be described in this 
unified framework [15]. The Hamiltonian consists of a relativistic 
kinetic term,

H =
√

p2
Q̄

+ m2
Q̄

+
√

p2
Q + m2

Q , (3)

and a generalized quark–antiquark potential which, to first order 
in v2

Q , reduces to that given by (2) with αs replaced by a running 
coupling constant

αs(r) = − 8π

33 − 2n f

1

ln(�r)
, �r � 1 , (4)

where n f is the number of quark flavors which are active in pair 
production, and � the quantum chromodynamics (QCD) scale. Rea-
sonably accurate results for the spectrum and matrix elements of 
meson systems of all u, d, s, c, b quark flavors have been found 
by taking � = 398 MeV, mc = 1628 MeV, mb = 4884 MeV, and 
σ = 0.18 GeV2 [13].

It would be erroneous to think of the potential (2) as a non-
Abelian static solution to the classical Yang–Mills equations. If this 
was the case, the linearly rising term of the Yang–Mills vector 
potential would lead to a problem with Gauss’ law because in-
tegrating the field strength F a

μν over two-dimensional spheres of 
increasing radii would result in successively higher magnitudes 
of the color charge of the source Q a . Meanwhile an exact non-
Abelian solution Aa

μ to the classical SU(3) Yang–Mills equations 
with the source composed of two arbitrarily moving colored point 
charges has long been known [16–19]. This Aa

μ comprises two 
parts related to their respective quarks, each involving generalized 
Liénard–Wiechert terms and linearly rising terms. For this solu-
tion, Gauss’ law holds because the flux of the Liénard–Wiechert
term of F a

μν through any two-dimensional surface enclosing the 
source equals 4π Q a , the remaining terms cancel each other. Al-
though the solution Aa

μ contains two linearly rising terms, both 
give rise to no force. The general reason for this surprising result 
is conformal invariance of the Yang–Mills equations. The linearly 
rising term depends on a dimensional parameter whereby scale in-
variance is violated. While this violation is allowable for the gauge 
quantities Aa

μ and F a
μν , it cannot be tolerated for observables. In 

actual fact, the stress–energy tensor Tμν and the four-force f μ are 
free of scale-violating terms. A dimensional parameter, which mea-
sures a gap in the energy spectrum and violates scale symmetry, 
only occurs on the quantum level due to quantum anomalies and 
dimensional transmutations.

The confining potential (2) may arise at a certain stage of 
derivation of an effective theory to low-energy QCD when irrel-
evant field variables have been integrated out from the field equa-
tions or the QCD path integral.2 However, a systematic implemen-
tation of this project in QCD is still a good distance in the future. 
By now, the nature of the confining potential is open to specula-
tion; we even cannot say whether it is a scalar U S , or pseudoscalar 
U P S , or the time component of a four-vector potential U V , or their 

2 To illustrate, we solve the classical Yang–Mills equations in the Yang–Mills–
Wong theory [19] by expressing the retarded gauge field Aa

μ(x) in terms of variables 
describing the world lines of N color particles, zμ

I (sI ), I = 1, . . . , N . This operation 
corresponds to integrating out the field degrees of freedom Aa

μ(x) from the particle 
dynamics. Likewise, integrating out gluon and ghost variables from the QCD path 
integral will supposedly result in the starting point of our consideration, Eq. (7), 
where A(r), A0(r), and U S (r) are classical background fields which form a nonper-
turbative relief of the gluon vacuum.

combination. This sends us in search of phenomenological hints. 
One possibility is to invoke the spin symmetry condition U S = U V

or the pseudospin symmetry condition U S = −U V [20], accompa-
nied by the assumption that 2U V is identical to V Cornell . For sim-
plicity, we ignore U P S because the qualitative conclusions of our 
consideration are unaffected by the availability of U P S . We thus 
regard V Cornell as an effective potential. More precisely, V Cornell
is a semi-finished product of the effective theory; the net effec-
tive potential could be found upon completion of integrating out 
spin degrees of freedom of a quark which moves in the potential 
V Cornell.

The bag model was formulated in such a way as to combine 
two basic features of QCD: asymptotic freedom and confinement. 
A ground-state hadron is imagined as a spherical cavity, or a bag, 
to which quark and gluon fields are confined. The bag is character-
ized by a constant B , positive energy per unit volume. The char-
acteristic linear dimension of a hadron is thus scaled by (1/B)1/4. 
The energy of a free quark of mass m confined to a sphere of ra-

dius R is given by ε = (
m2 + p2/R2

)1/2
, where p is the quark mo-

mentum in units of 1/R . This system is unstable in the sense that 
increasing R decreases the energy monotonically until R = ∞. It is 
this instability which leads to introducing the quantity B , a “pres-
sure” that stabilizes the system. The total energy of N quarks in 
the bag becomes

E(R) =
N∑

i=1

(
m2 + p2

i

R2

) 1
2

+ B
4π R3

3
, (5)

and equilibrium is attained when E(R) is minimized, ∂ E/∂ R = 0. 
If we restrict our consideration to massless quarks, we obtain the 
size of a stable hadron

R = 4

3

pmin N

E
, (6)

where pmin = 2.04 is the minimal value of the momentum cor-
responding to mR = 0 [21]. On putting N = 3 and E = Mnucleon, 
we find that the size required to generate a nucleon mass from 
the kinetic energy of massless quarks and the confining pressure 
is R = 1.6 fm. Note that this size is typical of light nuclei.

A hadron can execute rotations which makes its form stretched. 
This points to the existence of stringlike solutions in the bag 
model. On the assumption that stringlike configurations of the bag 
maximize angular momentum for fixed mass the bag string ten-
sion is shown to be σ = (32παs B/3)1/2 [7].

The ad hoc introduction of the pressure B may seem rather 
awkward. However, the mechanism of confinement in the bag 
model is amenable to more fundamental treatments. The inter-
ested reader may consult Ref. [6] where successes and drawbacks 
of the MIT bag model [3], the SLAC bag model [4], and the soliton 
bag model [5] are considered at length. Of special interest to our 
discussion are solutions of the classical Yang–Mills equations that 
were argued to have a direct bearing on the bag [22,23]. A solution 
of this kind is singular on a sphere of radius r0, and hence is inter-
preted as a Yang–Mills black hole with the color “event horizon” 
at r = r0.3

3 This brings up the question: How did the scale invariance violating quantity r0

occur in the Yang–Mills theory? The classical Yang–Mills equations are invariant 
under conformal transformations only in spacetime dimension D = 4. The con-
figuration studied by Lunev [22] is a solution of the Euclidean three-dimensional 
Yang–Mills theory in which the Yang–Mills coupling constant g has dimension 
(length)−1/2. With this in mind it is difficult if not impossible to regard this config-
uration as a static solution of the four-dimensional Yang–Mills theory. The config-
uration found by Singleton in [23] is a solution to the equations which govern the 
Yang–Mills fields interacting with a massless scalar field in four-dimensional space-
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