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In the recently proposed non-local theory of quantum gravity one can avoid massive tensor ghosts at the 
tree level by introducing an exponential form factor between the two Ricci tensors. We show that at the 
quantum level this theory has an infinite amount of massive unphysical states, mostly corresponding to 
complex poles.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The general relativity (GR) is a very successful theory of gravity, 
but it is perhaps not an ultimate theory. One of the reasons is 
that the fourth derivative terms in the action of gravity become 
necessary as the UV completion of the theory at the semiclassical 
level [1] (see also [2,3] for the introduction and [4] for a recent 
pedagogical review). The same fourth-derivative terms make the 
theory of quantum gravity (QG) renormalizable [5]. On the other 
side, fourth derivatives lead to the massive ghosts in the physical 
spectrum of the theory, leading to the violation of unitarity.

The consistency of the fourth derivative quantum gravity (QG) 
can be, in principle, achieved by dealing with the dressed prop-
agator instead of the classical one [6–8]. The main expectation 
is that the massive ghost poles become unstable and decay in 
the far future, such that the asymptotic out-state becomes free 
of ghosts. Unfortunately, the final conclusion concerning this ap-
proach requires a complete non-perturbative knowledge of the 
dressed propagator [9], which is unavailable.

Some years ago a completely different approach was proposed 
by Tomboulis [10]. The action of this new theory of QG has an in-
finite amount of derivatives. It was discovered a few years earlier 
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by Tseytlin [11] that for some specially tuned form of the non-
local action such a theory is free of ghosts at the tree level while 
the exponential form factors remove Newtonian singularity, simi-
lar to the much simpler fourth derivative gravity [5]. The approach 
of [11] (see also [12]) was to use this action in the framework of 
string theory, as an alternative of the Zwiebach ghost-killing trans-
formation of the background fields [13–15]. In string theory the 
ghost-free non-local action is a kind of a “final product”, which is 
not supposed to gain further quantum corrections.1 On the con-
trary, if one takes the same model as a basis of quantum gravity 
[10], the following three important questions should be answered:

• First, how to quantize the non-local theory?
• Second, what is the power counting in a theory with infinite 

amount of derivatives?
• The third and most difficult question is what happens with 

the ghost-free structure of the theory after the quantum cor-
rections are taken into account?

Concerning the first point, the quantization of non-local the-
ories has been discussed in the literature [17] and is relatively 
well-understood. The second issue has been explored in [10] and 

1 However, this does not make it free of ambiguity related to the third and higher 
powers of curvature, similar to the one discussed in [16].
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in the more recent publications [18–20]. The main conclusion is 
that the power counting in the non-local theory of [10] is the same 
as in the local higher derivative superrenormalizable QG suggested 
earlier in [21]. Moreover, in both cases there is a chance to make 
such a QG theory finite. This can be certainly achieved in the local 
case [21] and very likely in the non-local one.2

In the present work we will mainly address the third question. 
There are strong arguments that at least the most simple exam-
ple of the non-local theory suggested in [10] does not remain free 
of ghost-like states at the quantum level. The last means that the 
quantum corrections lead to an infinite amount of the ghost-like 
states in the dressed propagator. The relation between ghosts in 
the classical (naked) and dressed propagators is almost opposite to 
what was expected in the fourth-derivative renormalized theory of 
QG [5–8].

The paper is organized as follows. In Section 2 we present a 
brief review of the non-local gravity which is ghost-free at the 
tree-level. In Section 3 we explain the power counting in the 
non-local model, here our consideration mainly follows previous 
publications [10,18] and [20], but we try to make it more transpar-
ent, especially by comparing to the local superrenormalizable QG 
case [21]. Some relevant details concerning Lagrangian quantiza-
tion of the non-local theory are settled in Appendix A. In Section 4
it is shown how the ghost-free structure is violated by quantum 
corrections to the propagator. In Section 5 we discuss the modi-
fied Newtonian limit in the non-local theory and the possible role 
played by the “hidden” ghosts. Finally, in the last section we draw 
our conclusions.

2. Non-local ghost-free models

The simplest way to count degrees of freedom in QG is based 
on the analysis of the tree-level propagator on the flat background. 
In most of the theories this procedure gives the same result as 
canonical quantization [22,3]. In order to explore the flat-space 
propagator, the relevant part of the classical action is at most bi-
linear in the curvature tensor,

S =
∫

d4x
√−g

{
− 1

κ2
R + R F1(�) R + Rμν F2(�) Rμν

+ Rμναβ F3(�) Rμναβ
}

. (1)

Here κ2 = 16πG and F1,2,3 are functions of d’Alembertian op-
erator. The cosmological constant term is set to zero, following 
the standard treatment [5]. In order to simplify the action, let us 
note that the difference between the term Rμναβ F3(�)Rμναβ and 
the combination 4Rμν F3(�)Rμν − R F3(�)R is proportional to the 
term of the third power in curvature, O(R3

...) (see, e.g., [21,23]). 
Therefore one can cast the relevant part of the action (1) in the 
form

S =
∫

d4x
√−g

{
− 1

κ2
R + 1

2
Cμναβ �(�) Cμναβ

+ 1

2
R �(�) R

}
, (2)

where Cμναβ is the Weyl tensor. The function � is responsible for 
the spin-0 part of the propagator and the function � for the spin-
2 part. For the sake of simplicity, we can mainly concentrate on 
the spin-2 sector. The consideration for the �-part would be very 
similar. After the Fourier transformation, the relevant equation for 
defining the poles of the propagator is [10]

2 In the odd space–time dimensions this can be easily proved in [18].

p2 [
1 + κ2 p2�(−p2)

] = 0 . (3)

One can see that there is always a massless pole corresponding 
to gravitons. For a constant � there is also a massive pole cor-
responding to a spin-2 ghost, which may be also a tachyon. For 
a non-constant polynomial function � there are always ghost-like 
poles, real or complex [21]. However, one can choose the function 
� in such a way that there will not be any other spin-2 pole, ex-
cept the graviton p2 = 0. The simplest example of this sort is [11]

1 + κ2 p2�(−p2) = eαp2
, (4)

where α is some constant of the dimension mass−2. One can find 
other entire functions which have the same features [10,18], but 
for the sake of simplicity we consider only (4).

Let us remember that the exponential function has two remark-
able properties. The equation exp z = 0 has no real solutions and 
only one very peculiar solution

z = −∞ + i × 0 (5)

on the extended complex plane. At the same time, already the 
equation exp z = A �= 0 has infinitely many complex solutions, the 
same is true for

ez = Az2 log z , (6)

which is the typical case for the exponential theory with logarith-
mic quantum corrections. These well-known features of exponen-
tial function mean, in our case, that the absence of massive ghosts 
in the spin-2 part of the propagator of the theory (4) is the result 
of an absolutely precise tuning of the function �(−p2). If this tun-
ing is violated by the loop corrections, then the ghosts-like states 
will emerge in an infinite number. For instance, any polynomial 
addition to the exponential function produce infinitely many com-
plex solutions.

One important note is in order. The expression “ghosts-like 
states” means that these states are not exactly the “classical” mas-
sive ghosts, that means states with positive square of mass and 
negative kinetic energy. In the present case there are mostly com-
plex poles, that means a complex “square of mass” and complex 
“kinetic energy”. This situation makes the particle interpretation 
of these states rather complicated. We postpone the discussion of 
this issue until another publication and will call these states sim-
ply ghosts in what follows.

If the theory with more ghosts should be qualified worst, then 
the exponential gravity (4) with violated absolute tuning is worse
than the polynomial version of superrenormalizable QG [21] (see 
also the next section), because the last has only finite amount of 
ghosts. So, the main question concerning the theory of exponential 
gravity (4) is whether one can preserve an absolute tuning of (4)
at the quantum level. In the next sections we consider this issue 
starting from the strongest effect related to the UV divergences 
and related logarithmic running. For comparison, we also present 
considerations for the mentioned polynomial model of QG.

3. Power-counting in local and non-local QG

Before discussing the dressed propagator and possible violation 
of the absolute tuning in (4), let us shortly review the renormaliza-
tion properties of the theory (2) and some its natural extensions. 
A brief survey of the Lagrangian quantization of the theories such 
as (2) or (7) with some details related to non-local versions of the 
theory can be found in Appendix A.
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