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Functional renormalisation group approach is applied to a imbalanced many-fermion system with a 
short-range attractive force. We introduce a composite boson field to describe pairing effects, and assume 
a simple ansatz for the effective action. A set of approximate flow equations for the effective coupling 
including boson and fermionic fluctuations is derived and solved. We identify the critical values of 
particle number density mismatch when the system undergoes a normal state. We determine the phase 
diagram both at unitarity and around. The obtained phase diagram is in a reasonable agreement with the 
experimental data.
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The mechanism of pairing in imbalanced many-fermion systems 
is nowdays a subject of the intensive theoretical and experimen-
tal studies (see Ref. [1] for review). This phenomenon occurs in 
many physical systems from molecular physics to quark matter at 
finite density. Being different in details, the underlying dynamical 
mechanisms share a common feature related to Cooper instabil-
ity leading to a rearrangement of the ground state and associated 
spontaneous symmetry breaking.

In this paper we focus on the asymmetric ultracold atomic 
Fermi mixture of two fermion flavours, which realises a highly 
tunable system of strongly interacting fermions. This tunability is 
provided by a Feshbach resonance, which allows to control the in-
teraction strength between two different species of fermions and 
explore the BEC-BCS crossover in a wide range of physical pa-
rameters. Another tunable parameter (in asymmetric systems) is 
the population imbalance which can be used to probe how sta-
ble the superfluid phase is. The problem was studied long ago by 
Clogston and Chandrasekhar [2] who found that in the BCS limit 
the system with the chemical potential mismatch δμ undergoes 
first order phase transition to a normal phase at δμc = 0.71�0

where �0 is the gap at zero temperature for balanced system. Re-
cently, the issue has been looked at again but now in the case of 
strongly interacting fermions with infinite scattering length (uni-
tary limit) [1]. Most theoretical studies have been performed in the 
framework of the mean-field (MF) type of approaches which are of 
limited use for the imbalanced many-fermion systems and may not 

E-mail address: boris.krippa@manchester.ac.uk.

be reliable in providing quantitative answers. In many cases the ef-
fects of quantum fluctuations turn out to be important.

The aim of the present paper is to set up a framework to 
study pairing phenomena in imbalanced many-fermion systems 
using the formalism of Functional Renormalisation Group [3] (FRG) 
where the effects of quantum fluctuations are included in a consis-
tent and reliable way. The FRG approach makes use of the Legendre 
transformed effective action: �[φc] = W [ J ] − J ·φc , where W is the 
usual partition function in the presence of an external source J . 
The action functional � generates the 1PI Green’s functions and 
reduces to the effective potential for homogeneous systems. In the 
FRG one introduces an artificial renormalisation group flow, gener-
ated by a momentum scale k and we define the effective action by 
integrating over components of the fields with q � k. The RG tra-
jectory then interpolates between the classical action of the under-
lying field theory (at large k) and the full effective action (at k = 0). 
This method has been successfully applied to a range of problems, 
from condensed matter physics [4] to particle physics [5].

The evolution equation for � in the ERG has a one-loop struc-
ture and can be written as

∂k� = − i

2
Tr

[
(�

(2)
B B − RB)−1 ∂kRB

]
+ i

2
Tr

[
(�

(2)
F F − RF )−1 ∂kRF

]
. (1)

Here �(2)
F F (B B) is the matrix containing second functional deriva-

tives of the effective action with respect to the fermion (boson) 
fields and RB(F ) is a matrix containing the corresponding boson 
(fermion) regulators which must vanish when the running scale 
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approaches zero. A 2 × 2 matrix structure arises for the bosons be-
cause we treat φ and φ† as independent fields in order to include 
the number-violating condensate. A similar structure also appears 
for the fermions. By inserting the ansatz for � into this equation 
one can turn it into a set of coupled equations for the various cou-
plings.

Here we study a system of fermions with population imbalan-
cies interacting through an attractive two-body point-like potential 
and consider pairing between the fermions with different flavours 
assuming that the interaction between the identical ones is negli-
gible. We take as our starting point the s-wave scattering of two 
nonidentical fermions in vacuum with a T -matrix determined by 
the scattering length a. A positive scattering length corresponds 
to a system with a two-body bound state (and hence repulsive 
phase-shifts for low-energy scattering) whereas a negative scatter-
ing length corresponds to one without a bound state. The binding 
energy gets deeper as a gets smaller, while the limit a → ±∞ is 
related to a zero-energy bound state.

Since we are interested in the appearance of a gap in the 
fermion spectrum, we need to parametrise our effective action in a 
way that can describe the qualitative change in the physics when 
this occurs. A natural way to do this is to introduce a boson field 
whose vacuum expectation value (VEV) describes the gap and so 
acts as the corresponding order parameter. At the start of the RG 
flow, the boson field is not dynamical and is introduced through 
a Hubbard–Stratonovich transformation of the four-fermion point-
like interaction. As we integrate out more and more of the fermion 
degrees of freedom by running k to lower values, we generate dy-
namical terms in the bosonic effective action.

We take the following ansatz for � which is a generalisation of 
the ansatz used in [6] for a balanced many-fermion system

�[ψ,ψ†, φ,φ†,μ,k]
=

∫
d4x

[
φ†(x)

(
Zφ i∂t + Zm

2m
∇2

)
φ(x) − U (φ,φ†)

+
i=2∑
i=1

ψ†
(

Zψ(i∂t + μi) + Z Mi

2Mi
∇2

)
ψ

−g

(
i

2
ψTψφ† − i

2
ψ†ψ†Tφ

)]
. (2)

Here Mi and m are masses of fermions and composite boson. 
All renormalisation factors, couplings and chemical potentials run 
with the scale k. The term containing the boson chemical poten-
tial is quadratic in φ so it can be absorbed into effective potential 
U and the Yukawa coupling is assumed to describe the decay (cre-
ation) of a pair of nonidentical fermions. Due to U (1) symmetry 
the effective potential depends only on the combination φ†φ. We 
expand the potential U (ρ) near its minima and keep terms up to 
order ρ3.

U (φ,φ†) = u0 + u1(ρ − ρ0) + 1

2
u2(ρ − ρ0)

2

+ 1

6
u3(ρ − ρ0)

3 + . . . , (3)

where ρ = φ†φ. We assume Zψi = Z Mi = 1 and neglect running 
of Yukawa coupling. One notes that the expansion near minimum 
of the effective potential (either trivial or nontrivial), being quite 
reliable in the case of second order phase transition, may not be 
sufficient to quantitatively describe the first order one. It is worth 
emphasising that the CC limit related transition from the super-
fluid phase to a normal one is of the first order so that a reliability 
of the expansion needs to be verified. However, as we will dis-
cuss below, at small/moderate asymmetries even a simple ansatz 

for the effective action the effective potential expanded up to the 
third order in the field bilinears gives a reasonable description of 
the corresponding phase diagram and provides a clear evidences 
that the phase transition is indeed of first order.

At the starting scale the system is in a symmetric regime with 
a trivial minimum so that u1(k) is positive. At some lower scale 
k = kc the coupling u1(k) becomes zero and the system undergoes 
a transition to the broken phase with a nontrivial minimum and 
develops the energy gap.

In our RG evolution we have chosen the trajectory when chem-
ical potentials run in the broken phase and the corresponding par-
ticle densities ni remain fixed so that we define “running Fermi-
momenta” for two fermionic species as pi = √

2Miμi . It is conve-
nient to work with the total chemical potential and their difference 
so we define

μ = μ1 + μ2

2
; δ = μ1 − μ2

2
(4)

and assume that μ1 is always larger then μ2. Calculating corre-
sponding functional derivatives, taking the trace and performing a 
contour integration results in the following flow equation for the 
effective potential

∂kU = − 1

2Zψ

∫
d3q

(2π)3

E1F + E2F√
(E1F + E2F )2 + 4g2ρ

(∂k R1F + ∂k R2F )

+ 1

2Zφ

∫
d3q

(2π)3

EBR√
E2

BR − V 2
B

∂k R B , (5)

where

EBR(q) = Zm

2m
q2 + U ′′ρ + U ′ + R B(q,k), V B = U ′′ρ, (6)

and

Ei F ≡ Ei F (q,k, pi) = εi(q) − μi + Ri F (q, pi,k),

εi(q) = q2/2Mi . (7)

Here we denote U ′ = ∂U
∂ρ and U ′′ = ∂2U

∂ρ2 etc.

One notes that the position of the pole in the fermion loop in-
tegral which defines the corresponding dispersion relation is given 
by

q0 = E2F − E1F ± √
(E2F + E1F )2 + 4�2

2
, (8)

where �2 = g2ρ is the square of the pairing gap.
In the physical limit of vanishing scale this dispersion relation 

indicates a possibility of the gapless exitation in asymmetric many-
fermion systems (much discussed Sarma phase [7]). The gappless 
exitation occurs at �

δ
< 1. As we will show below, this condition is 

never fulfilled so that Sarma phase does not occur. We note, how-
ever, that this conclusion is valid at zero temperature case and can 
be altered at finite temperature where the possibility for the Sarma 
phase still exists [1]. The corresponding bosonic exitations are just 
gapless “Goldstone” bosons as it should be.

In order to follow the evolution at constant density and running 
chemical potential we define the total derivative

dk = ∂k + (dkμ)
∂

∂μ
+ (dkρ)

∂

∂ρ
, (9)

where dkμ = dμ/dk, dkρ = dρ/dk. Applying this to effective po-
tential, demanding that n is constant (dkn = 0) gives the set of the 
flow equations
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