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A B S T R A C T

In this paper, the electrochemical current noise (ECN) signals were measured on large symmetrical
(100–100 mm2), small symmetrical (1–1 mm2) and asymmetrical electrodes (1–100 mm2) made of
AA6061 and AA2024 alloys in 1.0 M chloride solutions at different pH values (6, 2, 1 and 0.4). The results
were analyzed by statistical and wavelet methods. In the near-neutral solution the asymmetrical
electrodes made of Al alloys were more favorable for ECN measurements compared to both the large and
the small symmetrical electrodes. The asymmetrical electrodes in near-neutral solutions allowed
recognizing the true timescale of the predominant transients directly from the maximum peak of the
SDPS plots, so that the comparison of the partial and original signals was not necessary. According to the
statistical analysis, the asymmetrical electrodes in acidic solutions gradually lost their essential
characteristic for recording the unidirectional ECN signals with decreasing pH. This can be attributed to
both the dissolution of the passive oxide layer and the cathodic noise arising from the hydrogen bubble
evolution. According to the wavelet analysis, for the asymmetrical electrodes made of AA6061 it is
possible to detect the true timescale of the predominant transients on the basis of the maximum peak in
the SDPS plots, even in highly acidic solutions, while for those made of AA2024 it is necessary to compare
the partial and original signals, whether at pH 2 or lower.

ã 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electrochemical noise (EN) is a promising technique for
corrosion analysis which has gained popularity in the recent years
[1–14]. As one of the most important advantages offered by this
technique, EN measurements can be performed without the
external application of electrical signals, so that the natural
evolution of corrosion processes is assured. EN defined as the
fluctuations of potential or current originating from the corrosion
events in a corrosion process. Two nominally identical working
electrodes (WEs) are connected via a zero-resistance ammeter
(ZRA) monitoring the coupling current between WEs.

Although the EN measurement is simple, the understanding of
the information included in the EN signals, i.e. the EN analysis,
remains difficult. The main approaches used to analyze the EN
signals are statistical, Fourier transform (FT) and wavelet
transform (WT) techniques. The statistical and FT methods give
meaningful results only when the EN signals are stationary.
However, EN signals originating from corrosion processes are often
non-stationary, because of the presence of a significant DC drift [8].
These two techniques can analyze the non-stationary signals only
after detrending as a pre-processing method. WT may be regarded
as a variant of FT in which the continuous sine waves used in the FT
are replaced by transients with a finite duration, known as
wavelets. WT method, unlike statistical and FT techniques, can
analyze non-stationary signals without the need for pre-process-
ing method [8–14].

In this paper, wavelet transform is computed by means of the
fast wavelet transform (FWT), whose flow diagram is plotted in
Fig. 1 [8]. There are three different operations included in the
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algorithm: low-pass filter, high-pass filter and down-sampling,
shown in Fig.1 as L, H and #2 respectively. There is a down-sampler
after each filter. Low frequencies of the signal pass through the
low-pass filter and high frequencies of the signal pass through the
high-pass filter. Therefore, the low-pass filter produces a smoothed
version of the signal, while the high-pass filter produces the detail
signals [8]. Each set of coefficients, d1, d2,. ., dJ and SJ obtained from
FWT is called a crystal (Fig. 1). The frequency range of each crystal
is represented by the equation:

ðf 1; f 2Þ ¼ 2�jf s; 21�jf s
� �

(1)

where fs is sampling frequency, and j is the number of the crystal.
The timescale range of each crystal is given by the equation [13]:

I1; I2ð Þ ¼ 2jDt; 2j�1Dt
� �

(2)

where Dt is the sampling interval Dt ¼ 1
f s

.
. Table 1 shows the

frequency and timescale ranges of the case in which j ¼ 8 and
f s ¼ 4Hz. It is experimentally determined that an eight-level
decomposition is sufficient to capture the valuable mechanistic
information in detail crystals d1–d8 [8,9,13–15].

The inverse wavelet transform can produce partial signals of the
original signal. Each partial signal is a signal which resembles the
time fluctuations of the original signal at a particular frequency
range. This proves the high distinguishing capacity of WT in both
time and frequency domains, simultaneously [14]. The standard
deviation of partial signal (SDPS) which depends on both the
number and the amplitude of transients existing in the partial
signal, can be an indication of the intensity of electrochemical
activity on the surface of the electrodes within a particular
timescale (or frequency) range [13]. The plot of the SDPS versus
their corresponding crystal name is called SDPS plot. Such a plot
provides mechanistic information about physical processes. Fig. 2
represents the schematic of the most essential information from an
SDPS plot [14]. Short timescale crystals, typically d2 and d3, and
medium timescale crystals d4–d6 can be dominant in the case of
the localized corrosion. The large timescale crystals d7 and d8 are
dominant in the case of general corrosion. In many cases, the

smooth S8 crystal is mainly attributed to the DC drift in the original
signal. For a more detailed discussion on wavelet transform and
SDPS plot, one can refer to an earlier paper [13].

Statistical analysis of EN data in the time domain could provide
several important parameters such as standard deviation, skew
and kurtosis. Standard deviation is one of the simplest ways to
describe the intensity of a noise signal. It is calculated using the
following equation [16]:

s ¼

XN
i¼1

xi � xð Þ2

N

0
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1
CCCCA

1=2

(3)

where xi is the measured value, x is the mean value and N is the
number of points in the recorded signal.

The skew of a distribution is a measure of its symmetry about
the mean, and is defined as [17]:

Skew ¼ 1
N

XN
i¼1

xi � x
s

� �
(4)

A zero value of skew indicates that the distribution is symmetrical
about the mean value. A positive value indicates a distribution tail
in the positive direction and vice versa.

The kurtosis is a measure of distribution shape. The normalized
kurtosis is expressed by the following equation [17]:

Kurtosis ¼ 1
N

XN
i¼1

xi � x
s

� �
� 3 (5)

The kurtosis for a normal distribution is zero. A positive kurtosis
implies a “peaked” distribution while negative kurtosis indicates a
“flat” distribution [18]. Both skew and kurtosis are dimensionless.
Since the statistical parameters (especially skew and kurtosis) are
sensitive to drift, it is necessary to limit the effects of drift by
suitable trend removal prior to statistical analysis [2]. There is a
delicate balance between, on the one hand, sufficient trend
removal and, on the other hand, preventing loss of valuable data.
The choice of which trend removal procedure to apply is probably
one of the most difficult problems in the analysis of EN data. The
challenge is that the procedure must be robust and must effectively
attenuate the low-frequency components without eliminating
useful information or creating artifacts. There are some regular
trend removal methods like moving average removal, linear trend
removal and polynomial fitting. Moving average trend removal has
already been shown to be not appropriate for drift removal [19].
Linear trend removal has been found to show satisfactory results in
case the drift is relatively uniform [19,20]. However, if this is not
the case, it is impossible for this technique to effectively remove

Fig. 1. General scheme of the FWT algorithm [8].

Table 1
Frequency and timescale ranges for J = 8 and fs = 4Hz.

Crystal name Frequency range/Hz Timescale range/s

d1 4 – 2 0.25–0.5
d2 2 – 1 0.5 – 1
d3 1–0.5 1 – 2
d4 0.5–0.25 2–4
d5 0.25–0.125 4–8
d6 0.125–0.0625 8–16
d7 0.0625–0.0312 16–32
d8 0.0312–0.0156 32–64
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