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We investigate the causal structure in the scalar–tensor theory with the field derivative coupling to the 
Einstein tensor, which is a class of the Horndeski theory in the four-dimensional spacetime. We show 
that in general the characteristic hypersurface is non-null, which admits the superluminal propagations. 
We also derive the conditions that the characteristic hypersurface becomes null and show that a Killing 
horizon can be the causal edge for all the propagating degrees of freedom, if the additional conditions 
for the scalar field are satisfied. Finally, we find the position of the characteristic hypersurface in the 
dynamical spacetime with the maximally symmetric space, and that the fastest propagation can be su-
perluminal, especially if the coupling constant becomes positive. We also argue that the superluminality 
itself may not lead to the acausality of the theory.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

After the investigation of many models [1], it has turned out that the successful modification of the Einstein gravity can be rewritten 
into a class of the Horndeski scalar–tensor theory [2,3], which is known as the most general scalar–tensor theory with the second order 
equations of motion despite the existence of the various derivative interactions. On the other hand, it is also well known that in the 
spacetime with more than five dimensions the most general tensor gravitational theory is not the Einstein gravity, but the gravitational 
theory with the correction of the Lovelock terms [4], for example, in the five-dimensional spacetime the Einstein gravity with the cor-
rection of the Gauss–Bonnet term, which does not give rise to the higher derivative terms in the gravitational equations of motion. In 
superstring/M theories the Lovelock terms appear as a typical form of the quantum corrections [5]. The relation between the Horndeski 
and Lovelock theories has been argued in the recent works [6] and essentially the Horndeski theory can be derived via the dimensional 
reduction from the higher-dimensional Lovelock theory. Thus, to find the fundamental aspects of quantum gravity, the investigation of the 
general properties of the Horndeski theory will be very important.

The causality and well-posedness of the initial value problem are the fundamental issues in any gravitational theory. For example, the 
well-posedness of the initial value problem in the Einstein gravity has been proven (see e.g. [7]). In the Einstein gravity coupled to the 
fields with the canonical kinetic terms, it is well known that all the speeds of propagation are less than or equal to the speed of light. On 
the other hand, if a gravitational theory admits a superluminal degree of freedom, its propagation can become spacelike and hence the 
discussion on the causality based on the metric does not make sense, because the Cauchy development is fixed by this fastest propagation.

A superluminal propagation is a typical feature in the theory with noncanonical kinetic terms [8–10]. In the case where all the fields 
have canonical kinetic terms, taking the high frequency mode, the equation of motion of the I-th canonical field ψI in the Fourier space 
reduces to gμνkμkνψ̂I = 0, where gμν is the (inverse) gravitational metric, ψ̂I is the Fourier component of ψI and kμ is the covariant 
momentum vector, which gives the solution that kμ is a null vector. Thus the fastest propagation speeds are the same and coincide 
with the speed of light. On the other hand, if the degrees of freedom have noncanonical kinetic terms, the above equation is modified as 
Gμν

(I) kμkνψ̂I = 0, where Gμν
(I) represents the effective metric for the I-th field, which in general nonlinearly depends on the fields and differs 

from gμν . Thus the fastest propagation may not be along the null hypersurface but along the spacelike one. If � is the hypersurface beyond 
which the evolution is not unique, � is called the characteristic hypersurface (see e.g. [11]). The characteristic hypersurface gives the edge 
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of the Cauchy development and the fastest propagation must be tangent to it. The superluminality does not necessarily mean acausality, 
but the fastest propagation could characterize the Cauchy development. The causal structure should be defined as the chronological past 
set by this fastest propagation. The Cauchy problem in the modified gravity theories has been investigated, so far in the Lovelock theory [8,
9,12,13], the scalar–tensor theories [14,15], the f (R) gravity [16], the nonlinear massive gravity [10] and the string-inspired gravitational 
theories [17].

In this letter, we investigate the causal properties in a class of the scalar–tensor theory with the field derivative coupling to the Einstein 
tensor:

S = 1

2

∫
dD x

√−g
[

M D−2
D R −

(
gμν − z

M2
D

Gμν
)
∂μφ∂νφ − 2V (φ)

]
, (1)

where the indices μ, ν = 0, 1, 2 · · · , D −1 run the D-dimensional spacetime, gμν is the metric tensor, g := det(gμν) is its determinant, and 
R and Gμν are the Ricci scalar and the Einstein tensor computed from the metric gμν , respectively. MD and z represent the D-dimensional 
Planck mass and the dimensionless parameter characterizing the field derivative coupling to the Einstein tensor, respectively. The scalar 
field φ has the mass dimension D−2

2 and V (φ) is its potential. Despite the existence of the derivative coupling, the highest derivative terms 
in the equations of motion are of the second order because of the contracted Bianchi identities ∇μGμν = 0, where ∇μ is the covariant 
derivative with respect to the metric gμν . In this letter, we do not consider the matter sector, as we focus on the causal properties of the 
pure gravity sector which is composed of the metric and the scalar field. Also, we will set MD = 1, unless it should be given explicitly.

Before starting with the explicit analyses, we should add more explanations about why we focus on the field derivative coupling 
Gμν∂μφ∂νφ. Among the field derivative couplings to the curvature which are of the quadratic order with respect to φ, argued in the 
earlier works [18], Gμν∂μφ∂νφ is the unique coupling that gives the second order equations of motion. In the four-dimensional spacetime, 
in addition to the fact that the theory (1) corresponds to a class of the Horndeski theory, the coupling Gμν∂μφ∂νφ, which is of the 
quadratic order with respect to φ, provides the simplest class of the derivative couplings to the curvature, because the other derivative 
couplings in the Horndeski theory are typically of higher order with respect to φ. Moreover, from the cosmological point of view, Ref. [19]
argued that among the various couplings in the Horndeski theory, the coupling F1(φ)Gμν∂μφ∂νφ is one of the special ones which could 
exhibit the self-tuning mechanism of the cosmological constant. The other couplings obtained in [19] are the nonminimal coupling to the 
Ricci scalar F2(φ)R , that to the Gauss–Bonnet term F3(φ)(R2 − 4Rμν Rμν + Rαβμν Rαβμν) and also the field derivative coupling to the 
double-dual of the Riemann tensor F4(φ)Pμναβ

(
∂μφ ∂αφ

)∇ν∇βφ, where Pμναβ := − 1
4 εμνλσ Rλσγ δε

αβγ δ (εαβγ δ is the Levi-Civita tensor), 
which is divergence-free ∇μ Pμναβ = 0 and has the same symmetries with the Riemann tensor [20]. Then, Ref. [19] also argued that among 
them the field derivative couplings to the spacetime curvature, F1(φ)Gμν∂μφ∂νφ and/or F4(φ)Pμναβ

(
∂μφ ∂αφ

)∇ν∇βφ, should always be 
included into the theory for obtaining the phenomenologically viable self-tuning mechanism. As the operator Pμναβ

(
∂μφ ∂αφ

)∇ν∇βφ

is typically higher-dimensional than Gμν∂μφ∂νφ, Pμναβ
(
∂μφ ∂αφ

)∇ν∇βφ would be less important at the low energy scales. Therefore, 
among the couplings argued in [19], as the first step it is reasonable to focus on Gμν∂μφ∂νφ in (1). On the other hand, also in the proxy 
theory of the nonlinear massive gravity [21] both the couplings Gμν∂μφ∂νφ and Pμναβ

(
∂μφ ∂αφ

)∇ν∇βφ appear. Again, the coupling 
Gμν∂μφ∂νφ would be less suppressed than Pμναβ

(
∂μφ ∂αφ

)∇ν∇βφ by the inverse powers of the strong coupling scale. Furthermore, we 
should also stress that the coupling Gμν∂μφ∂νφ appears in the low energy effective action of string theory [22] and can be embedded 
into supergravity [23]. Finally, from the phenomenological points of view, the theory (1) has been extensively applied to cosmology [18,
24,25] and black hole physics [26–28]. In the context of the inflationary cosmology, the coupling Gμν∂μφ∂νφ could realize the inflationary 
expansion and a graceful exit from inflation in the early universe without introducing a potential (for z < 0) [18]. The shift symmetry 
and the modified scalar field dynamics with the enhanced friction term due to this kinetic coupling could also provide a UV protected 
framework for slow-roll inflation (for z > 0) [25], which could give the predictions consistent with the observational data more easily. 
In the context of the black hole physics, the exact solution found in the theory (1) represents the stealth accretion of the scalar field 
onto a Schwarzschild black hole [27], which can circumvent the no-hair arguments and may provide an interesting playground to test 
the Horndeski theory in the astrophysical environment (see also [26–28], for the other black hole solutions). In summary, Gμν∂μφ∂νφ is 
one of the most important derivative couplings in the Horndeski theory, in the sense that it could be dominant at the low energy scales 
and is motivated very well by the various aspects of more fundamental physics, and has very interesting applications to the problems 
in cosmology and black hole physics. It has also been reported that the perturbation could exhibit the superluminal propagation in the 
inflationary and black hole backgrounds [25,29]. Therefore, as the next step, it will be very important to clarify more general properties of 
the theory (1) beyond the particular background solutions, and in this letter we will focus on the causal properties in the theory (1).

Our purpose is to clarify the general conditions that the fastest propagation speed can be superluminal and also all the propagation 
speeds coincide with the speed of light. We believe that our results can reveal some of the essential causal properties in the Horndeski 
theory, and also the similarity/difference between the Horndeski and the Lovelock theories studied in [8,9,13]. While the Lovelock terms 
can be nontrivial in the spacetime with more than five dimensions, the theory (1) becomes nontrivial even in the four-dimensional 
spacetime and hence the properties pointed out here may also be important in the problems in astrophysics and cosmology.

2. The dynamical equations and characteristics

Varying the action (1) with respect to the metric gμν gives the gravitational equation of motion

Gμν = Tμν + zEμν, (2)

where we defined

Tμν := ∇μφ∇νφ − 1

2
gμν∇λφ∇λφ − V (φ)gμν, (3)
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