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We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton 
class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the 
most recent α measurements and discuss ways to distinguish it from alternative models for varying α. 
For model parameters which saturate bounds from current observations, the redshift drift signal can 
differ considerably from that of the canonical �CDM paradigm at high redshifts. Measurements of this 
signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α
measurements, will thus dramatically constrain these scenarios.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The observational evidence for cosmic acceleration, first in-
ferred from the luminosity distance of type Ia supernovae in 1998 
[1,2], opened a new avenue in cosmological research. The most 
obvious task in this endeavor is to identify the source of this 
acceleration—the so-called Dark Energy—and in particular to ascer-
tain whether it is due to a cosmological constant or to a new dy-
namical degree of freedom. While the former option, correspond-
ing to the canonical �CDM paradigm, is arguably the simplest, 
many alternative models have been proposed and still have to be 
tested [3].

The most natural way to model dynamical energy is through a 
scalar field, of which the recently discovered Higgs is the obvious 
example [4,5]. String theory predicts the presence of a scalar part-
ner of the spin-2 graviton, the dilaton, hereafter denoted φ. Here, 
we will study the cosmological consequences of a particular class 
of string-inspired models, the runaway dilaton scenario of Damour, 
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Piazza and Veneziano [6,7]. In this scenario, which among other 
things provides a way to reconcile a massless dilaton with exper-
imental data, the dilaton decouples while cosmologically attracted 
towards infinite bare coupling, and the coupling functions have a 
smooth finite limit

Bi(φ) = ci +O(e−φ). (1)

As discussed in [7], provided there’s a significant (order unity) 
coupling to the dark sector, the runaway of the dilaton towards 
strong coupling may yield violations of the Equivalence Principle 
and variations of the fine-structure constant α that are potentially 
measurable.

More than a decade after the original analysis the available α
measurements have improved substantially [8,9], and it’s there-
fore timely to revisit these models. Additional gains in sensitivity 
will be provided by forthcoming facilities such as the E-ELT: its 
high-resolution ultra-stable spectrograph (HIRES) will significantly 
improve tests of the stability of fundamental couplings and will 
also be sensitive enough to carry out a first measurement of the 
redshift drift deep in the matter-dominated era [10,11]. The com-
bination of both types of measurements is a powerful probe of 
dynamical dark energy, as it can distinguish between models that 
are indistinguishable at low redshifts [12]. In what follows we ob-
tain constraints on this runaway dilaton scenario using current α
data, and also discuss how they may be further improved.

http://dx.doi.org/10.1016/j.physletb.2015.03.002
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2015.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:Carlos.Martins@astro.up.pt
mailto:pvielzeuf@ifae.es
mailto:martinelli@thphys.uni-heidelberg.de
mailto:erminia.calabrese@astro.ox.ac.uk
mailto:stefania@dark-cosmology.dk
http://dx.doi.org/10.1016/j.physletb.2015.03.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.03.002&domain=pdf


378 C.J.A.P. Martins et al. / Physics Letters B 743 (2015) 377–382

2. Runaway dilaton cosmology

As discussed in [6,7], the Einstein frame Lagrangian for this 
class of models is

L = R

16πG
− 1

8πG
(∇φ)2 − 1

4
B F (φ)F 2 + · · · , (2)

where R is the Ricci scalar and B F is the gauge coupling func-
tion. From this one can show [7] that the corresponding Friedmann 
equation, relating the Hubble parameter, H , to the dilaton and the 
other components of the universe is as follows

3H2 = 8πG
∑

i

ρi + H2φ′ 2, (3)

where the sum is over the components of the universe, except the 
kinetic part of the dilaton field which is described by the last term 
(where the prime is the derivative with respect to the logarithm 
of the scale factor). The sum does include the potential part of the 
scalar field; the total energy density and pressure of the field are

ρφ = ρk + ρv = (Hφ′)2

8πG
+ V (φ), (4)

pφ = pk + pv = (Hφ′)2

8πG
− V (φ); (5)

here k and v correspond to the kinetic and potential parts of the 
field, with the latter providing the dark energy. On the other hand, 
the evolution equation for the scalar field is

2

3 − φ′ 2
φ′′ +

(
1 − p

ρ

)
φ′ = −

∑
i

αi(φ)
ρi − 3pi

ρ
. (6)

Here p = ∑
i pi , ρ = ∑

i ρi , and sums are again over all compo-
nents except the kinetic part of the scalar field.

The αi(φ) are the couplings of the dilaton with each compo-
nent i, so they characterize the effect of the various components 
of the universe in the dynamics of the field. One may generically 
expect that the dilaton has different couplings to different com-
ponents [7]. Experimental constraints impose a tiny coupling to 
baryonic matter, as we will discuss presently. In these models, this 
small coupling could naturally emerge due to a Damour–Polyakov 
type screening of the dilaton [13].

The relevant parameter here is the coupling of the dilaton field 
to hadronic matter. As discussed in [13], to a good approximation 
this is given by the logarithmic derivative of the QCD scale, since 
hadron masses are proportional to it (modulo small corrections). 
Assuming that all gauge fields couple, near the string cutoff, to the 
same B F (φ), and in accordance with Eq. (1) which yields

B−1
F (φ) ∝ (1 − bF e−cφ), (7)

we can write

αhad(φ) ∼ 40
∂ ln B−1

F (φ)

∂φ
(8)

(where the numerical coefficient is further described in [7]) and 
we finally obtain

αhad(φ) ∼ 40 bF c e−cφ. (9)

Note that c and bF are constant free parameters: the former one 
is expected to be of order unity and the latter one much smaller. 
Moreover, if we set c = 1 (which we will do henceforth) we can 
also eliminate bF by writing

αhad(φ)

αhad,0
= e−(φ−φ0) (10)

(where φ0 is the value of the field today) and simultaneously writ-
ing the field equation in terms of (φ − φ0).

There are two local constraints. Firstly the Eddington param-
eter γ , which quantifies the amount of deflection of light by a 
gravitational source, has the value

γ − 1 = −2α2
had,0, (11)

and is constrained by the Cassini bound, γ − 1 = (2.1 ± 2.3) ×
10−5 [14]. Secondly the dimensionless Eötvös parameter, quantify-
ing violations to the Weak Equivalence Principle, has the value

ηAB ∼ 5.2 × 10−5α2
had,0, (12)

and recent torsion balance tests lead to ηAB = (−0.7 ± 1.3) ×
10−13 [15], while from lunar laser ranging one finds ηAB = (−0.8 ±
1.2) × 10−13 [16]. From these we conservatively obtain the bound

|αhad,0| ≤ 10−4. (13)

Using Eq. (9), and still assuming that c ∼ 1, this yields a bound 
on the product of bF and (the exponent of) φ0, namely φ0 ≥
ln (|bF |/2 × 10−6). Nevertheless, this is not explicitly needed: the 
evolution of the system will be determined by αhad rather than by 
bF or φ0.

These constraints do not apply to the dark sector (i.e. dark mat-
ter and/or dark energy) whose couplings may be stronger. There 
are two possible scenarios to consider. A first possibility is that the 
dark sector couplings (which we will denote αm and αv for the 
dark matter and dark energy respectively) are also much smaller 
than unity, that is αm, αv 	 1. In this case the small field veloc-
ity leads to violations of the Equivalence Principle and variations 
of the fine-structure constant that are quite small. Indeed, for this 
case to be observationally realistic the fractions of the critical den-
sity of the universe in the kinetic and potential parts of the scalar 
field must be


k = 1

3
φ′2 	 1, 
v ∼ 0.7; (14)

note that if one assumes a flat universe, then 
m + 
k + 
v = 1
(do not confuse the index k, which refers to the kinetic part of the 
scalar field, with the curvature term in standard cosmology, which 
we are setting to zero throughout). A more interesting possibil-
ity is that the dark couplings (αm and/or αv ) are of order unity. 
If so, violations of the Equivalence Principle and variations of the 
fine-structure constant are typically larger. In this case 
k may be 
more significant, and 
v should be correspondingly smaller [17]. 
Nevertheless the dark matter coupling is also constrained: during 
matter-domination the equation of state has the form

wm(φ) = 1

3
φ′2 ∼ 1

3
α2

m. (15)

The present value of the field derivative is also constrained if 
one assumes a spatially flat universe; in that case the deceleration 
parameter

q = −aä

ȧ2
= −1 − Ḣ

H2
(16)

can be written as

φ′
0

2 = (1 + q0) − 3

2

m0 (17)

and using a reasonable upper limit for the deceleration parame-
ter [18] and a lower limit for the matter density (say, from the 
Planck mission [19]) we obtain

|φ′
0| ≤ 0.3, (18)
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