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We provide a theoretical basis for understanding the spin structure of the proton in terms of the spin 
and orbital angular momenta of free quarks and gluons in Feynman’s parton picture. We show that each 
term in the Jaffe–Manohar spin sum rule can be related to the matrix element of a gauge-invariant, 
but frame-dependent operator through a matching formula in large-momentum effective field theory. 
We present all the matching conditions for the spin content at one-loop order in perturbation theory, 
which provide a basis to calculate parton orbital angular momentum in lattice QCD at leading logarithmic 
accuracy.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Understanding the spin structure of the proton has been an 
important goal in hadron physics. In the past 25 years, two well-
known spin sum rules have been proposed to analyze the content 
of the proton spin. The first, proposed by Jaffe and Manohar [1], 
was motivated from a free-field expression of QCD angular mo-
mentum boosted to the infinite momentum frame (IMF) of the 
proton. The second is the frame-independent and manifestly 
gauge-invariant decomposition by one of the authors [2]. Notwith-
standing that the latter has received considerable attention for its 
relation to generalized parton distributions (GPDs) and experimen-
tal probes [2–4], it is not natural in the language of parton physics 
(see, however, a recent discussion on its connection to the trans-
verse polarization [5]). In contrast, the Jaffe–Manohar sum rule 
defined in the light-cone gauge A+ = 0 has a natural partonic in-
terpretation, as the proton spin can be decomposed into four parts,

1

2
= 1

2
��(μ) + �Lq(μ) + �G(μ) + �Lg(μ), (1)

where the individual terms are the spin and orbital angular mo-
menta (OAM) of the quark and gluon partons, respectively, and μ
is the renormalization scale. All the four terms are defined to be 
the proton matrix elements of free-field angular momentum oper-
ators (AMOs) in IMF [1]:

�J =
∫

d3x ψ†
��
2

ψ +
∫

d3x ψ†�x × (−i �∇)ψ
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+
∫

d3x �Ea × �Aa +
∫

d3x Ei
a �x × �∇ Ai,a, (2)

where Ei = F i+ , a and i are the color and spatial indices. How-
ever, the free-field form of the angular momentum in gauge theo-
ries faces a conceptual problem: all terms except the first one are 
gauge dependent, and it is unclear why the light-cone gauge oper-
ator is measurable in physical experiments.

In the past two decades, there has been a long list of literatures 
attempting to justify the Jaffe–Manohar sum rule as physical (see 
e.g., [6–12]). There are strong motivations behind this: First, �G
as defined in the light-cone gauge is measurable in high-energy 
experiments, although this appears to be a theoretical puzzle by 
itself—while �G is easy to define from the Feynman parton pic-
ture, there is no natural gauge-invariant notion for the spin of 
gauge particles [13]. Second, when the proton is probed in IMF, 
some of its physical properties can be understood from simple 
addition of those of free quarks and gluons. For example, the lon-
gitudinal momentum of the proton is the sum of that of the quark 
and gluon partons:

1 =
∫

dx x

(∑
q

q(x) + g(x)

)
, (3)

where q(x) and g(x) are the unpolarized quark and gluon momen-
tum distribution functions. This simple parton picture may work 
for the proton spin as well.

It was first proposed that although the free-field AMOs are 
gauge dependent, their physical matrix elements are gauge invari-
ant [7]. A similar claim was also made recently [8]. However, this is 
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invalidated by a one-loop calculation by the present authors [10], 
where the matrix element of the gluon spin operator was shown 
to be different in the Coulomb and light-cone gauges [14] (for 
more general discussions see Ref. [9]). Actually, as argued in Refs. 
[11,10], for the bound-state proton, there is no physically mean-
ingful notion of gluon spin or OAM due to the existence of lon-
gitudinal gluons. Only when the proton is boosted to IMF, the 
longitudinal component of gluons is suppressed by the infinite 
boost and the gluons can be regarded as free radiation. This is the 
well-known Weizsäcker–Williams (WW) approximation [15]. The 
gluon spin then acquires a clear physical meaning and can be rep-
resented by �E × �A, but is subject to a class of “physical” gauge 
conditions that leave the transverse polarizations of the gluon field 
intact [12]. Similar arguments also apply to the quark and gluon 
OAM. Therefore, we can regard the free-field form in the Jaffe–
Manohar sum rule as physical if we work in IMF with a “physical” 
gauge condition. This is equivalent to using the light-cone coordi-
nates and gauge [1], and the reason is simple: All the “physical” 
gauges will flow into the light-cone gauge in the IMF limit [12].

From a practical perspective, the Jaffe–Manohar sum rule still 
poses difficulty for a nonperturbative lattice calculation of its in-
dividual contributions, because the explicit usage of light-cone co-
ordinates and gauge brings real-time dependence. One may avoid 
this difficulty by using normal space–time coordinates with a 
“physical” gauge that does not involve time, and calculating with a 
proton at infinite momentum. However, the largest momentum at-
tainable on the lattice with spacing a is constrained by the lattice 
cutoff π/a.

The above difficulty can, however, be circumvented in the 
framework of large-momentum effective field theory (LaMET) [16]
proposed by one of the authors. Suppose one is to calculate some 
light-cone or parton observable O. Instead of computing it directly, 
one defines, in the LaMET framework, a quasi-observable Õ that 
depends on a large hadron momentum P z . In general, both O and 
Õ suffer from ultraviolet (UV) divergences. If P z → ∞ is taken 
prior to a UV regularization, the quasi-observable Õ becomes the 
parton observable O by construction. However, what one can cal-
culate in practice is the quasi-observable Õ at large but finite P z

with UV regularization imposed first. This is the case in lattice 
computations. The difference between O and Õ is just the order 
of limits. This is similar to an effective field theory set-up. The dif-
ference is that here the role of perturbative degrees of freedom is 
played by the large momentum of the external state, hence it can-
not be arranged into a Lagrangian formalism. Nevertheless, one can 
bridge the quasi- and parton observables through

Õ(P z/�) = Z
(

P z/�,μ/�
)
O(μ) + c2

(P z)2
+ c4

(P z)4
+ · · · , (4)

where � is a UV cutoff imposed on the quasi-observable, and ci ’s 
are higher-twist contributions suppressed by powers of P z . That 
is, the quasi-observable Õ(P z/�) can be factorized into the par-
ton observable O(μ) and a matching coefficient Z , up to power 
suppressed corrections. Taking the P z → ∞ limit does not change 
the infrared (IR) behavior of the observable, but only affects its UV 
behavior. Therefore O(μ) captures all the IR physics in Õ(P z/�), 
and the matching coefficient Z is completely perturbative.

An explicit example of Eq. (4) is presented in Refs. [17,18] for 
the case of parton distribution functions (PDFs), where the factor-
ization formula has a convolution form, and the matching coeffi-
cients were calculated at the leading logarithmic order. Using these 
results, the first direct lattice calculation of the isovector sea-quark 
parton distributions has been available recently [19]. A similar fac-
torization formula was also proposed in Ref. [20] to extract PDFs 
from lattice QCD calculations based on QCD factorization of lattice 
“cross sections”.

Within the LaMET framework, we can start with suitable quasi-
observables to calculate the proton spin content. According to our 
discussions above, these quasi-observables can be defined as the 
free-field QCD AMOs in a “physical” gauge condition that has the 
correct WW approximation in the IMF limit [12]. A possible choice 
of the “physical” gauge condition is the expression in terms of non-
local operators introduced by Chen et al. [21,22]:

�JQCD =
∫

d3x ψ†
��
2

ψ +
∫

d3x ψ†�x × (−i �∇ − g �A‖)ψ

+
∫

d3x �Ea × �Aa⊥ +
∫

d3x Ei
a (�x × �∇)Ai,a

⊥ , (5)

where �x are the spatial coordinates, and �A is decomposed into a 
pure-gauge part �A‖ and a physical part �A⊥ which satisfy (see also 
Ref. [23])

∂ i A j,a
‖ − ∂ j Ai,a

‖ − g f abc Ai,b
‖ A j,c

‖ = 0,

∂ i Ai⊥ − ig[Ai, Ai⊥] = 0, (6)

so that each term in Eq. (5) is gauge invariant. From Eq. (6), one 
can show that in the Coulomb gauge �∇ · �A = 0, �A⊥ equals �A order 
by order in perturbation theory. Therefore, Eq. (5) corresponds to 
choosing the Coulomb gauge as the “physical” gauge.

It has been shown in Ref. [10] that �Ea × �Aa⊥ in Eq. (5) is equiv-
alent to the total gluon spin operator in the IMF limit. It is easy to 
see that the other nonlocal terms in Eq. (5) also have the correct 
WW approximation as the parton OAM. Therefore, we can choose 
the nonlocal operators in Eq. (5) as the quasi-observables for par-
ton angular momentum in the LaMET approach.

The advantage of the expression in Eq. (5) is that it is time 
independent and thus allows for a direct calculation in lattice 
QCD. Suppose we evaluate the matrix elements of these quasi-
observables with finite momentum P z , we should have

1

2
= 1

2
��̃(μ, P z) + �G̃(μ, P z)

+ �L̃q(μ, P z) + �L̃ g(μ, P z), (7)

where the P z-dependence is expected since Eq. (5) is a frame-
dependent expression [10]. Following the effective theory argu-
ment above, we can relate these quasi-observables to the corre-
sponding parton observables through the following factorization 
formula:

��̃(μ, P z) = ��(μ),

�G̃(μ, P z) = zqg��(μ) + zgg�G(μ) + O

(
M2

(P z)2

)
,

�L̃q(μ, P z) = Pqq�Lq(μ) + P gq�Lg(μ)

+ pqq��(μ) + pgq�G(μ) + O

(
M2

(P z)2

)
,

�L̃ g(μ, P z) = Pqg�Lq(μ) + P gg�Lg(μ)

+ pqg��(μ) + pgg�G(μ) + O

(
M2

(P z)2

)
, (8)

where M is the proton mass, and all the matrix elements are 
renormalized in the MS scheme. ��̃(μ, P z) is the same as ��(μ)

because the quark spin operator is frame independent and should 
have the same matrix elements in the Coulomb and light-cone 
gauges. The zi j , Pij and pij ’s are the matching coefficients to be 
calculated in perturbative QCD.

In the remainder of this paper, we show how to obtain all the 
matching coefficients in Eq. (8) at one-loop order. First, let us take 
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