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We use the heat kernel in order to compute the one-loop effective action on a classicalon background. 
We find that the UV divergences are suppressed relative to the predictions of standard perturbation 
theory in the interior of the classicalon. There is a strong analogy with the suppression of quantum 
fluctuations in Galileon theories, within the regions where the Vainshtein mechanism operates (discussed 
in arXiv:1401.2775). Both classicalon and Galileon theories display reduced UV sensitivity on certain 
backgrounds.
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The scenario of classicalization [1] suggests that high-energy 
scattering in certain classes of nonrenormalizable scalar field the-
ories can take place at length scales much larger than the typi-
cal scale associated with the nonrenormalizable terms in the La-
grangian. It has been argued that the reason for this behavior is 
that the UV completion of the theory is achieved not through the 
inclusion of arbitrarily hard modes, but through collective states, 
which are composed of a large number of soft quanta and display 
classical properties [2]. The crucial ingredient is the presence of a 
semiclassical configuration, the classicalon, generated by a point-
like source. Classicalons generally exist in theories of Goldstone 
bosons, or other higher-derivative theories [1,3]. In spite of sev-
eral studies, a complete picture of classicalization is not available 
yet. It has been shown that a collapsing spherical wavepacket can 
be deformed significantly at the so-called classicalization radius, 
which can be much larger than the fundamental length scale of 
the theory [4,5]. However, in some theories the classical scatter-
ing problem may not have real solutions over the whole space 
at late times,1 while in others the maximum of the collapsing 
wavepacket can reach distances of the order of the fundamental 
scale. It seems that classicalization is not a generic phenomenon, 
but appears in theories with particular properties. It has been sug-
gested that such theories cannot be extended through the inclusion 
of new degrees of freedom at short scales, but generate a physical 
UV cutoff through their own dynamics [7]. The “wrong-sign” DBI 
theory is a possible candidate. It can display some undesirable fea-
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1 An interesting possibility is that the absence of a real classical solution in the 
scattering problem may indicate the presence of a tunnelling solution in the quan-
tum theory [6], so that classicalization is a quantum process.

tures, such as superluminality on certain nontrivial backgrounds 
[8,9] (see, however, [7,10]). On the other hand, it has been argued 
that quantum fluctuations are suppressed in this theory, as well as 
in all theories that admit classicalons [11]. This is consistent with 
the notion that hard modes do not play a role in high-energy scat-
tering. In this letter we would like to address this issue through 
an explicit calculation of quantum corrections on classicalon back-
grounds.

We shall follow the steps of a similar calculation, performed in 
the context of the cubic Galileon theory on a background that real-
izes the Vainshtein mechanism [12]. The Galileon theory describes 
the dynamics of the scalar mode that survives in the decoupling 
limit of the DGP model [13]. It contains a dimensionful coupling 
that sets the scale � at which the theory becomes strongly cou-
pled [14]. This scale can be identified with the UV cutoff. In the 
presence of a point-like source, the theory has a spherically sym-
metric solution with a characteristic radius rV , usually refer to as 
the Vainshtein radius [12]. At distances much larger than rV classi-
cal fluctuations on top of the background propagate as free waves, 
while at distances smaller than rV they are suppressed. In [15] it 
was argued that, at the scales at which the Vainshtein mechanism 
operates, quantum fluctuations could be suppressed as well. Quan-
tum corrections in Galileon theories were studied in Refs. [16,17]
on a trivial background. In [17] the one-loop corrections were cal-
culated on the Vainshtein background in the presence of an ex-
plicit UV cutoff. Through an appropriate modification of the heat-
kernel formalism, it was shown that the background reduces the 
magnitude of the divergent terms. It must be emphasized that the 
theory remains nonrenormalizable. However, the sensitivity to the 
physical UV cutoff is much smaller than what would have been 
expected through naive perturbative arguments.
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The similar features of Galileon and classicalon theories make it 
plausible that a mechanism of suppression of quantum fluctuations 
could operate on classicalon backgrounds. In order to examine this 
possibility, we repeat the calculation of Ref. [17] for theories that 
can support classicalons. We consider a class of actions of the form

S =
∫

d4xK (X) , (1)

with X = ∂μπ∂μπ/2. Our convention for the Minkowski met-
ric is ημν = diag(−1, 1, 1, 1). The equation of motion has a one-
parameter, static, spherically-symmetric solution given by

KXπ ′(w) = − c

2w
3
2

, (2)

with c an integration constant (positive or negative), w = r2, X =
2wπ ′2, and KX = K′ (X), KX X = K′′ (X) etc. The primes indicate 
derivatives with respect to the indicated arguments of the various 
functions: π ′(w) = dπ/dw , K′(X) = dK/dX . The factor of 2 in the 
denominator and the minus sign have been added in order to sim-
plify formulae in the following. When these configurations extend 
over the whole space, they can be identified as classicalons.

For specific calculations we concentrate on variations of the DBI 
action. The standard DBI action has

K1 = 1

μ

√
1 − 2μX (3)

with μ < 0, while the “wrong-sign” theory corresponds to μ > 0. 
The solution (2) becomes

π ′
1(w) = 1

2

c√
w3 + μc2 w

, (4)

with c positive or negative. For μ < 0 the two branches can be 
joined at the location of the square-root singularity in order to 
obtain the catenoidal solution that has been studied in [18]. This 
solution does not extend over the whole space and it is not pos-
sible to characterize it as a classicalon. On the other hand, the 
“wrong-sign” DBI theory with μ > 0 leads to configurations that 
span the whole space. These are the classicalons considered in [1]. 
The discontinuity of the first derivative at the origin requires the 
presence of a δ-function source at this point. Similar solutions can 
be obtained for a theory with

K2 = −X − μX2/2 (5)

and μ > 0 (keeping only the first two terms in the expansion of 
the square root in the DBI theory). They are given by

π ′
2(w)

=
2 × 3

1
3 μw4 −

(
−9μ2cw5 +

√
μ3 w10

(
24w2 + 81μc2

)) 2
3

2 × 3
2
3 μw

5
2

(
−9μ2cw5 +

√
μ3 w10

(
24w2 + 81μc2

)) 1
3

.

(6)

In Fig. 1 we depict the classicalon solutions π ′
1(w) (blue 

lines) and π ′
2(w) (red lines) for various values of the inte-

gration constant c. We express all dimensionful quantities in 
terms of the fundamental scale of the theory, so that μ = 1. 
For large w , both solutions are approximately given by π ′(w) �
c/(2w3/2), so that π(r) = −c/r. On the other hand, for μ > 0
and small w we have π ′

1(w) � sign(c)/(2
√

μw) and π ′
2(w) �

sign(c)|c|1/3/(22/3μ1/3 w5/6). The transition between the two re-
gimes occurs at the classicalization radius rcl = √

wcl ∼ (c2μ)1/4. 
We do not consider the structure of the classicalons at distances 

Fig. 1. The classicalon solutions π ′
1(w) (blue lines) and π ′

2(w) (red lines) for μ = 1
and c = 1 (dashed lines), c = 2 (solid lines), c = 3 (dot-dashed lines). (For interpre-
tation of the references to colour in this figure, the reader is referred to the web 
version of this article.)

from the origin smaller than ∼ μ1/4 because we assume that the 
theory contains a physical UV cutoff � ∼ μ−1/4. For |c| � 1 there 
is a hierarchy between the scales μ1/4 and rcl , and the classicalons 
are well defined classical objects.

Our aim is to evaluate the one-loop effective action

�1 = 1

2
tr log	E , (7)

where 	E is the fluctuation operator on the classicalon configura-
tion. The calculation of the effective action (7) requires the tran-
sition to Euclidean signature though the definition t = −ix0. For 
this reason the derivative operators appearing in 	E are assumed 
to act on fields in four-dimensional Euclidean space. The second 
variation of the action (1) around the solution (2) gives

	E = −Gμν∂μ∂ν − Eμ∂μ (8)

Gμν = −KX gμν −KX X∂μπ∂νπ (9)

Eμ = −2KX X∂μ∂νπ∂νπ −KX X X∂ν∂ρπ∂ρπ∂νπ∂μπ

−KX X�π∂μπ. (10)

Here gμν stands for the Euclidean metric.
We would like to compute the effective action (7) using the 

heat kernel [19]. The calculation of tr log 	E for the fluctuation 
operator (8) can be mapped onto the calculation for a similar op-
erator with covariant derivatives involving both a Riemann and a 
gauge part [19], for which known results exist [20]. However, the 
correspondence between the two pictures is very complicated. We 
find it more efficient to follow the approach of [21], as applied to 
the case of Galileon theories in [17]. The heat kernel of 	E can be 
computed through the relation

h(x, x′, ε) =
∫

d4k

(2π)4
e−ikx′

e−ε	E eikx. (11)

The effective action can then be obtained from its diagonal part as

�1 = −1

2

∞∫
1/�2

dε

ε

∫
d4xh(x, x, ε). (12)

A lower limit has been introduced for the ε-integration in order 
to regulate the possible UV divergences. In our case, the UV cutoff 
is assumed to be � ∼ μ−1/4. The divergent terms in the effective 
action are generated through the expansion of the exponential in 
Eq. (11). In order to determine the UV divergences, which appear 
for ε → 0, it is useful to rescale k by 

√
ε , as was done in Ref. [21]. 

(For details, see [17].) The diagonal part of the heat kernel becomes
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