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The exact critical Casimir force between periodically deformed boundaries of a 2D semi-infinite strip is 
obtained for conformally invariant classical systems. Only two parameters (conformal charge, dimension 
of a boundary changing operator), along with the solution of an electrostatic problem, determine the 
Casimir force, rendering the theory practically applicable to any shape. The attraction between any two 
mirror symmetric objects follows directly from our general result. The possibility of purely shape induced 
reversal of the force, as well as occurrence of stable equilibrium is demonstrated for certain conformally 
invariant models, including the tricritical Ising model.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Fluctuation-induced forces (FIF) are ubiquitous in nature [1]; 
prominent examples include van der Waals [2], and closely re-
lated Casimir forces [3,4], originating from quantum fluctuations of 
the electromagnetic field. Thermal fluctuations in soft matter also 
lead to FIF, most pronounced near a critical point where correla-
tion lengths are large [5,6]. Controlling the sign of FIF (attractive 
or repulsive) is important to myriad applications in design and 
manipulation of micron scale devices. Theoretical results for FIF 
in various critical systems [7] have shown that sign changes of 
the force can be achieved by varying boundary fields [8,9]. Sign 
control has been achieved experimentally with judicious choice of 
materials in case of QED Casimir forces [10], and with appropriate 
boundary conditions for critical FIF [11–13].

The non-additive character of FIF has also prompted a quest 
for reversing the sign of Casimir forces solely by manipulation of 
shapes. The original impetus comes from the intriguing result by 
Boyer [14] for the modification of QED zero point energy by a 
spherical metal shell. The suggestion that this result may imply re-
pulsion between two hemispheres was later ruled out by a general 
theorem for attraction between mirror symmetric shapes [15,16]. 
There are indeed specific geometrical arrangements in which the 
normally attractive QED force in vacuum appears repulsive when 
constrained along a specific axis (e.g. [17,18]), but is unstable when 
moved off such axis. Indeed, a generalized Earnshaw’s theorem for 
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FIF in QED rules out the possibility of stable levitation (and conse-
quently force reversals) in most cases [19].

Two dimensional (2D) membranes have provided yet another 
arena for investigation of FIF, mostly focused on interactions aris-
ing due to modifications of capillary fluctuations (see, e.g. [20,21]
and references therein). More recently, motivated by the possibil-
ity that the lipid mixtures composing biological membranes are 
poised at criticality [22,23], it has been proposed that inclusions 
(such as proteins) on such membranes are subject to 2D analogs 
of critical FIF [24]. A notable advantage is that 2D systems at crit-
icality can be described by conformal field theories (CFT) [25,26]: 
Casimir forces in a strip are related to the central charge of the 
CFT [27–29], with appropriate modification for boundaries. There 
are results for interactions between circles [24], needles [30]; 
Ref. [31] describes any compact shapes. Here, we consider the in-
teraction between two wedges, or an array of wedges, as depicted 
in Fig. 1. We show that (with appropriate choice of CFT and bound-
ary conditions) the FIF can be attractive or repulsive depending on 
the angle of the wedge; and that stable equilibrium can be ob-
tained with truncated wedges and arrays of them.

Consider two identically corrugated, infinite boundaries that 
enclose a critical classical medium (e.g., a fluid or magnetic system 
at its critical temperature Tc ) described by a CFT. The boundaries, 
S1 and S2, impose conformally invariant boundary conditions a
and b, respectively, on the medium. While our method is appli-
cable to any shape, as specific examples we study the periodic, 
wedge-like shapes in Figs. 1(b), (d). As interactions at proximity 
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Fig. 1. Shapes considered: (a) two wedges, (b) strip with triangular corrugations, 
(c) truncated wedges with lateral shift, (d) strip with truncated corrugations and 
lateral shift. The blue regions mark half a unit cell (b) and a full unit cell (d). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

are dominated by the tips, we also consider the infinite wedges 
depicted in Figs. 1(a), (c). Following our approach for compact 
shapes [31], the strip with deformed boundaries is conformally 
mapped to a flat strip. Information about the intervening medium 
enters only via its conformal charge c, and the scaling dimension 
hab of the boundary changing operator (BCO) from a to b; with 
hab = 0 for like boundaries [32]. All information about the shape 
of the deformed strip is encoded in the conformal map to the flat 
strip. This map, and hence the FIF, can be obtained from the solu-
tion to an electrostatic problem. In the following, we combine the 
normal (y) and lateral (x) components of the force into the com-
plex expression F = (Fx − i F y)/2. For periodically deformed bound-
aries with wavelength λ and length W → ∞, F = Fstrip + Fgeo, 
where the first contribution is the force on a strip,1

Fstrip = −i
π
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that is determined by the free energy (per unit length) Fstrip =
−(π/2)(c/12 − η̃)/� of a flat strip of width � = 2π/Ccell with Ccell
the electrostatic capacitance of the deformed strip per unit cell, 
and η̃ ≡ 2hab . The second contribution is the geometric force

Fgeo = − ic

24π
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where {w, z} ≡ (∂3
z w/∂z w) − (3/2)(∂2

z w/∂z w)2 is the Schwarzian 
derivative of the conformal map w(z) of the deformed to the flat 
strip [32]. Due to periodicity, it is sufficient to construct w(z) for 
a unit cell so that integrations in Eqs. (1), (2) are restricted to a 
path �cell that separates S1 and S2 within a unit cell [cf. Fig. 1]. 
Of course, the forces are proportional to the number of unit cells, 

1 Throughout the paper we measure energies in units of kB Tc ; correspondingly 
forces are proportional to kB Tc divided by an appropriate length scale.

W /λ.2 Whereas the strip force depends on shape simply via the 
electrostatic capacitance [31], the geometric force has a more in-
tricate dependence on shape.

Conformal maps are physically realized as equipotential curves 
and stream lines in electrostatics. We employ this analogy to de-
rive a general result for the Casimir force in terms of the elec-
trostatic potential U (x, y) on the strip with the two boundaries 
held at a fixed potential difference �U = 1. The conformal map 
is then given by w(z) = U + iV where V is the conjugate har-
monic function to U . Clearly � = �U = 1. Since Eqs. (1), (2) involve 
only derivatives of w(z), we use the Cauchy–Riemann equations to 
get ∂z w = ∂xU − i∂y U and eliminate V . For practical computations 
(e.g. using finite element solvers) it is useful to express the Casimir 
force in terms of line integrals of real valued vector fields that are 
fully determined by derivatives of U . Parameterizing the contour 
�cell by r(s) = [x(s), y(s)] for 0 ≤ s ≤ 1, and splitting into real and 
imaginary parts, we obtain the force in terms of c, η̃ and U as
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with the vector fields (4)
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We note that the strip force Fstrip is proportional to the usual 
electrostatic force. This result also implies that the critical Casimir 
force between any pair of mirror symmetric boundaries is attrac-
tive for c > 0 [15,16]: In this case the electrostatic potential must 
be constant along the x-axis of mirror symmetry. Choosing this 
axis as �cell gives r′(s) ∼ −x̂ and hence shows that both Fstrip and 
Fgeo have a vanishing real part and a negative imaginary part for 
c/12 − η̃ > 0, which includes like boundaries (η̃ = 0). This implies a 

2 For finite W the corrections to the force are exponentially small in W with the 
characteristic scale λ. This can be seen by mapping the finite strip to a cylinder 
[31].
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