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In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on 
two-particle scattering processes and consider the entanglement between these particles. For two types 
initial states, i.e., an unentangled state and an entangled one, we calculate perturbatively the change of 
entanglement entropy from the initial state to the final one. Then we show a few examples in a field 
theory and in quantum mechanics.
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1. Introduction

Entanglement is a characteristic feature in a quantum theory. 
The entanglement in quantum field theories has been studied ex-
tensively in the past decade. When one considers a sub-system A
and its complement A, the entanglement entropy between A and 
A is defined by the von Neumann entropy S E = − trA ρA logρA
with the reduced density matrix ρA . Calabrese and Cardy have 
systematically studied it in a conformal field theory with the use 
of a replica trick [1]. The other remarkable recent progress is the 
holographic derivation of entanglement entropy suggested by Ryu 
and Takayanagi [2,3]. Following it, one can obtain an entangle-
ment entropy by calculating S E = A/(4G N ), where A is the area 
of a minimal surface whose boundary is the boundary of the sub-
system A. In other words, the holographic entanglement entropy 
provides us with a geometric understanding of entanglement.

Then there is the other geometric interpretation of entangle-
ment entropy conjectured recently by Maldacena and Susskind [4]. 
Its original purpose was to resolve the firewall paradox [5].1 This 
conjecture states that an Einstein–Rosen–Podolski pair, i.e., a pair 
of entangled objects, is connected by an Einstein–Rosen bridge (or 
a wormhole). Therefore the conjecture is symbolically called the 
ER=EPR conjecture. From the point of view of the AdS/CFT cor-
respondence, some examples supporting the ER=EPR conjecture 
have been shown. An entangled pair of accelerating quark and 
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(I.Y. Park), sjsin@hanyang.ac.kr (S.-J. Sin).
1 See Ref. [6] for an earlier work. It has predicted an energetic curtain, which is 

similar to the firewall, on the assumptions different from Ref. [5].

anti-quark was studied in Ref. [7]. Investigating the causal struc-
ture on the world-sheet minimal surface that is the holographic 
bulk dual of such a quark and anti-quark on the AdS boundary, 
Ref. [7] has found that there exists a wormhole on the minimal 
surface and that any open strings connecting the quark and anti-
quark must go through the wormhole. Therefore the entanglement 
of the accelerating quark and anti-quark coincides with the exis-
tence of the wormhole. Furthermore, Ref. [8] considered Schwinger 
pair creation of a quark and an anti-quark and confirmed that 
there is a wormhole on the string world-sheet of their bulk dual. 
Ref. [9] focused on a pair of scattering gluons as an EPR pair. Since 
Ref. [10] had shown the minimal surface solution corresponding 
to the gluon scattering, Ref. [9] calculated the induced metric on 
the minimal surface and found a wormhole connecting the gluon 
pair. One can then naturally guess that, in a scattering process,2 an 
interaction induces the variation of entanglement from an incom-
ing state to an outgoing one. We know these states are associated 
with each other by an S-matrix. So the question is how the vari-
ation of entanglement entropy and the S-matrix are related. In 
this paper we attack this problem by a perturbative analysis in 
a weak coupling λ. In order to evaluate the entanglement entropy, 
it is useful to calculate Rényi entropy by the replica trick when 
one can calculate it exactly. For instance, Ref. [12] explicitly cal-
culated the time evolution of the entanglement entropy between 
two free scalar field theories with a specific interaction. However, 
this method is often unavailable for a perturbative analysis. There-
fore we apply the method developed by Refs. [13,14], in which the 

2 Ref. [11] has studied the entanglement entropy in a decay process in terms of 
the Wigner–Weisskopf method.
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entanglement between two divided momentum spaces was stud-
ied perturbatively.

In Section 2, we consider the variations of entanglement en-
tropy from two kinds of initial states; one is an unentangled initial 
state and the other is an entangled one. In Section 3, we evaluate 
the variation of entanglement entropy in the field theory with a 
φ4-like interaction. We also consider the time-dependent interac-
tion in quantum mechanics. Section 4 is devoted to conclusion and 
discussion.

2. Perturbative calculation of entanglement entropy

Since we are interested in a scattering process of two particles, 
A and B, and their entanglement, let us consider the Hamiltonian 
with an interaction:

H = H0 + λH int, H0 = H A ⊗ 1 + 1 ⊗ H B . (2.1)

It is usually difficult to divide the total Hilbert space H to HA ⊗
HB due to the interaction. However an initial state far in the past 
and a final state far in the future in a scattering process can be re-
garded as states generated by an asymptotically free Hamiltonian. 
Furthermore, although a field theory in general includes arbitrary 
multi-particle states in its Hilbert space, we concentrate only on 
an elastic scattering of two particles such as A + B → A + B with 
a weak coupling. That is to say, we restrict the Hilbert space to 
the (1 + 1)-particle Fock space, in which the initial and final states 
are. Since such a restriction usually violates unitarity for local in-
teraction terms, we assume in this paper specific theories that do 
not produce states of more than 1 + 1 particles at lower orders of 
perturbation (see an example in Section 3.1). Then the unitarity is 
approximately recovered at a weak coupling. Under this assump-
tion, we can divide the Hilbert space of the initial and final states 
to HA ⊗ HB , and these states are denoted by a (1 + 1)-particle 
state generated by the free Hamiltonian H0, namely, a state of a 
particle A and B with momentum p and q:

|p,q〉 := |p〉A ⊗ |q〉B . (2.2)

One can express the infinite time evolution from the initial state 
to the final one in terms of S-matrix by definition,

lim
t→∞〈fin|e−iHt |ini〉 = 〈fin|S|ini〉, S := 1 + iT. (2.3)

T is a transition matrix in O(λ) which is induced by the interac-
tion. Then the final state is described as

|fin〉 =
∫

dkdl |k, l〉〈k, l|S|ini〉, (2.4)

in which we used the completeness relation of (1 + 1)-particles’ 
states, i.e., (1)(1+1)-particles = ∫

dkdl |k, l〉〈k, l|, and an inner prod-
uct of states, i.e., 〈k, l|p, q〉 = δ(k − p)δ(l − q). Although the norm 
〈p, q|p, q〉 =: V has an infinite volume, we shall fix a normalization 
at the stage of a reduced density matrix. Here we comment that 
one can easily formulate the case of discrete spectra by replacing ∫

dkdl with 
∑

k,l . As an example we shall show in Section 3.2 the 
theory with a time-dependent interaction in non-relativistic quan-
tum mechanics.

The total density matrix of the final state is ρ(fin) = |fin〉〈fin|, 
and we obtain the reduced density matrix ρ(fin)

A by taking trace 
of ρ(fin) with respect to the particle B, i.e., ρ(fin)

A = trB ρ(fin) up to 
normalization. In the case of (2.4) we can write down the reduced 
density matrix as

ρ
(fin)
A = 1

N

∫
dkdk′

(∫
dl〈k, l|S|ini〉〈ini|S†|k′, l〉

)
|k〉〈k′|, (2.5)

where N is a normalization constant determined by trA ρ
(fin)
A = 1, 

namely,

N =
∫

dkdl |〈k, l|S|ini〉|2. (2.6)

Then the entanglement entropy between A and B in the final state 
is

S(fin)
E = − trρ(fin)

A logρ
(fin)
A , (2.7)

and the variation of entanglement entropy from the initial state to 
the final one is

�S E = S(fin)
E − S(ini)

E , (2.8)

where S(ini)
E is the entanglement entropy of the initial state. We 

shall calculate these entanglement entropies perturbatively.
The replica trick allows us to calculate a Rényi entropy, 

S(n) = 1
1−n log trA ρn

A . The entanglement entropy is given by 
the n → 1 limit of Rényi entropy, namely, S E = limn→1 S(n) =
− limn→1

∂
∂n trA ρn

A . Therefore the method to derive an entangle-
ment entropy via a Rényi entropy is often useful. However, we are 
confronted with a problem when we analyze a quantum theory 
with a coupling λ in terms of perturbation. When one obtains a 
perturbative expansion of trA ρn

A , the term of order λn relevantly 
contributes to the entanglement entropy because the operation 
limn→1

∂
∂n acts on λn and yields a term of λ log λ order. In other 

words, the higher order terms in the Rényi entropy are responsible 
for the convergence of the entanglement entropy under the n → 1
limit. Hence any λn-order terms in trA ρn

A are necessary in order to 
obtain a meaningful entanglement entropy. In this paper, instead 
of the replica trick, we apply the perturbative method developed 
by Ref. [13] for calculating an entanglement entropy.

2.1. Unentangled initial state

Let us consider the simplest single state with fixed momenta 
p1 and q1 for the initial state of particle A and B,

|ini〉 ∼ |p1,q1〉. (2.9)

The normalization of states will be properly fixed later in normal-
izing a density matrix so that trA ρ

(fin)
A = 1. This initial state is 

obviously unentangled, i.e., S(ini)
E = 0. Then we can describe the 

final state (2.4) as

|fin〉 =
∫

dkdl |k, l〉Skl;p1q1

= Sp1q1;p1q1

V 2
|p1,q1〉 + iλ

∫
k 
=p1

dk
Tkq1;p1q1

V
|k,q1〉

+ iλ

∫
l 
=q1

dl
Tp1l;p1q1

V
|p1, l〉

+ iλ

∫
k 
=p1
l 
=q1

dkdlTkl;p1q1 |k, l〉, (2.10)

where we introduced an infinite spacial volume V := ∫
dx eix·0 =

δ(0) due to the divergence of norms, i.e., 〈p|p〉A = 〈q|q〉B = δ(0). 
The integral 

∫
k 
=p dk means 

∫
dk(1 − V −1δ(k − p)). Skl;pq and Tkl;pq

denote S- and T-matrix elements,

Skl;pq := 〈k, l|S|p,q〉, Tkl;pq := 1

λ
〈k, l|T|p,q〉. (2.11)
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