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The spin-base invariant formalism of Dirac fermions in curved space maintains the essential symmetries 
of general covariance as well as similarity transformations of the Clifford algebra. We emphasize the 
advantages of the spin-base invariant formalism both from a conceptual as well as from a practical 
viewpoint. This suggests that local spin-base invariance should be added to the list of (effective) 
properties of (quantum) gravity theories. We find support for this viewpoint by the explicit construction 
of a global realization of the Clifford algebra on a 2-sphere which is impossible in the spin-base non-
invariant vielbein formalism.
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1. Introduction

The mutual interrelation of matter and spacetime (“matter 
curves spacetime – spacetime determines the paths of matter”) is 
particularly apparent for fermions. For instance for Dirac fermions, 
information about both spin as well as spacetime meets in the Clif-
ford algebra,

{γμ,γν} = 2gμν I, (1)

where the Dirac matrices γμ as well as the metric gμν generally 
are spacetime dependent. While many tests of classical gravity rely 
on vacuum solutions to Einstein’s equation, also many attempts at 
quantizing gravity primarily concentrate on the dynamics of space-
time without matter, cf. [1]. This is similar in spirit to “quenched” 
QCD which allows to understand already many features of the 
strong interactions at the quantum level even quantitatively. Only 
recently, some evidence has been collected that the existence of 
matter degrees of freedom can constrain the existence of certain 
quantum gravity theories [2–6]. This is again analogous to QCD 
where the presence of too many dynamical fermions can destroy 
the high-energy completeness of the theory.

The interrelation of gravity and fermions provided by (1) has 
also been interpreted in various partly conflicting directions: read 
from right to left, one is tempted to conclude that one first needs 
a spacetime metric gμν in order to give a meaning to spinorial de-
grees of freedom and corresponding physical observables such as 
currents ∼ ψ̄γμψ . On the other hand, representation theory of the 
Lorentz group in flat space suggests that all nontrivial representa-
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tions can be composed out of the fundamental spinorial represen-
tation, culminating into (1) for Dirac spinors. If so, then also the 
metric might be a composite degree of freedom, potentially aris-
ing as an expectation value of composite spinorial operators, see, 
e.g., [7–9].

As a starting point to disentangle this hen-or-egg problem – 
spinors or metric first? – we consider the Clifford algebra (1) as 
fundamental in this work. We emphasize that this is different from 
a conventional approach [10], where one starts from the analogous 
Clifford algebra in flat (tangential) space, {γ(f)a, γ(f)b} = 2ηabI, with 
fixed γ(f)a and then uplifts the Clifford algebra to curved space 
with the aid of a vielbein eμ

a(x), such that γ(e)μ = eμ
aγ(f)a sat-

isfies (1). In addition to diffeomorphism invariance, the vielbein 
approach supports a local SO(3,1) symmetry of Lorentz transforma-
tions in tangential space, i.e. with respect to the roman bein index. 
By contrast, the Clifford algebra (1) actually supports a bigger sym-
metry of local similarity (spin-base) transformations in addition to 
general covariance.

Developing a formalism that features this full spin-base invari-
ance has first been initiated by Schrödinger [11] and amended 
with the required spin metric by Bargmann [12] in 1932. Surpris-
ingly, it has been rarely used in the literature, see, e.g., [13–19], or 
even reinvented [20]. A full account of the formalism also includ-
ing spin torsion has recently been given in [21]. Particular advan-
tages are not only the inclusion and generalization of the vielbein 
formalism. In a quantized setting, it even justifies the widespread 
use of the vielbein as an auxiliary quantity and not as a funda-
mental entity. Common quantization schemes relying on the met-
ric as fundamental degree of freedom remain applicable also with 
fermionic matter. Hence, a Jacobian from the variable transforma-
tion to the vielbein does not have to be accounted for [21].
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In this work, we present further advantages of the spin-base 
invariant formalism and discuss some general aspects in order to 
elucidate the interplay between diffeomorphisms and spin-base 
transformations. We point out various options of defining the spin-
base group, differing by the possible field content of further inter-
actions and also naturally permitting a Spinc structure. Since the 
conventional vielbein formalism can always be recovered within 
the spin-base invariant formalism, it is tempting to think that 
the latter is merely a technical perhaps overabundant generaliza-
tion of the former. We demonstrate that this is not the case by 
an explicit construction of a global spin-base on the 2-sphere – 
a structure which is not possible in the conventional formalism 
because of global obstructions from the Poincaré–Brouwer (hairy-
ball) theorem. We believe that this example is paradigmatic for the 
surpluses of the spin-base invariant formalism.

2. General covariance and spin-base invariance

Local symmetries are expected to be fundamental, since sym-
metry-breaking perturbations typically contain relevant compo-
nents which inhibit symmetry emergence. Hence, we consider the 
local symmetries of the Clifford algebra as fundamental. These are 
diffeomorphisms (formalized by tensor calculus of the Greek in-
dices) and local similarity transformations of the Dirac matrices 
[22], the spin base transformations,

γμ → SγμS−1, ψ → Sψ, ψ̄ → ψ̄S−1. (2)

The γμ transformation leaves the Clifford algebra equation (1) in-
variant. The corresponding transformation of spinors ensures that 
typical fermion bilinears and higher-order interaction terms serv-
ing as building blocks for a relativistic field-theory are also invari-
ant, provided a suitable connection exists. The latter should obey

�μ → S�μS−1 − (∂μS)S−1, (3)

such that ∇μ = ∂μ +�μ forms a covariant derivative with the stan-
dard covariance properties with respect to both diffeomorphisms 
as well as spin base transformations. The connection �μ has ex-
plicitly been constructed in d = 4 dimensions [20,21] as well as 
in lower [23] and higher dimensions [24]. For vanishing spin tor-
sion [21], the traceless part of �μ can fully be expressed in terms 
of the Dirac matrices and their first derivatives (part of the terms 
can be summarized by Christoffel symbols).

For simplicity, let us confine ourselves to the cases d = 4 and 
d = 2 (for generalizations, see [24]). Here, the dimension of the 
irreducible representation of the Clifford algebra is dγ = 4 and 
dγ = 2, respectively. A natural choice for the group of spin base 
transformations maintaining all invariance properties mentioned 
above is then given by GL(dγ , C).

However, GL(dγ , C) contains continuous subgroups that act 
trivially on the Clifford algebra. Considering the invariance proper-
ties of the Clifford algebra as fundamental, trivial subgroups appear 
redundant. Locally, elements of GL(dγ , C) can be decomposed into 
an SL(dγ , C) element and two factors proportional to the identity: 
a phase ∈ U(1) and a modulus ∈ R+ . Confining ourselves to the 
nontrivial invariance properties, hence suggest to identify the set 
of transformation matrices S with the fundamental representation 
of SL(dγ , C). This special linear group still has redundancies as its 
discrete center Zdγ does not transform the Dirac matrices nontriv-
ially.

The choice of the local spin-base group becomes only rele-
vant, once a dynamics is associated with the connection. For the 
choice of SL(dγ , C) and vanishing torsion, the corresponding field 
strength �μν satisfies the identity [20,21]

�μν = [∇μ,∇ν ] = 1

8
Rμνλκ [γ λ,γ κ ]. (4)

It is somewhat surprising as well as reassuring that – out of the 
large number of degrees of freedom in �μ – only those acquire 
a nontrivial dynamics which can be summarized in the Christof-
fel symbols and hence lead to the Riemann tensor on the right-
hand side of Eq. (4). As a consequence, spin-base invariance is 
also a (hidden) local symmetry of any special relativistic fermionic 
theory in flat space with an automatically trivial dynamics for 
the connection, even if kinetic terms of the form ∼ trγ μ�μνγ

ν

(∼ R Einstein–Hilbert) or ∼ tr�μν�μν would be added.
This is different if spin-base transformations are associated with 

GL(dγ , C). Then two additional abelian field strengths correspond-
ing to the U(1) and the non-compact R+ factors appear on the 
right-hand side of Eq. (4) and thus introduce further physical de-
grees of freedom. These correspond to the imaginary and real part 
of the trace of the connection �μ .1 Hence, the identification of the 
spin base group is in principle an experimental question to be ad-
dressed by verifying the interactions of fermions. In this sense, one 
might speculate whether the hypercharge U(1) factor of the stan-
dard model could be identified with the spin-base group provided 
proper charge assignments are chosen for the different fermions. 
The inclusion of the U(1) factor is particularly natural on man-
ifolds that do not permit a Spin structure (e.g., CP2) [25], as it 
provides exactly for the necessary ingredient to define the more 
general Spinc structure.

For the remainder of this work, it suffices to consider SL(dγ , C)

as the group of spin-base transformations. Returning to the hen-or-
egg problem, Eq. (4) seems interpretable as another manifestation 
of the intertwining of Dirac structure and curvature, or spin-base 
and general covariance. However, a clearer picture arises from an 
explicit coordinate transformation of the Clifford algebra,

{γ ′
μ,γ ′

ν} = 2g′
μν I = 2

∂xρ

∂x′μ
∂xλ

∂x′ν gρλI =
{

∂xρ

∂x′μ γρ,
∂xλ

∂x′ν γλ

}
. (5)

Read together with the spin-base invariance of the Clifford algebra 
[22,26], Eq. (5) implies that the most general coordinate transfor-
mation of a Dirac matrix is given by

γμ → γ ′
μ = ∂xρ

∂x′μ SγρS−1. (6)

From the sheer size of the spin-base group (at least SL(dγ , C)), it 
is obvious that this is a larger set of Dirac matrices satisfying the 
Clifford algebra than can be spanned by the vielbein construction. 
In the latter, only those realizations of the Clifford algebra γ(e)μ are 
considered, that can be spanned by a fixed set of Dirac matrices, 
γ(e)μ = eμ

aγ(f)a . A local Lorentz transformation with respect to the 
bein index can then be rewritten in terms of

�a
bγ(f)b = SLorγ(f)aS

−1
Lor , (7)

where SLor ∈ Spin(d − 1, 1) ⊂ SL(dγ , C). Conventionally, the SLor
factors are interpreted as Lorentz transformations of Dirac spinors, 
e.g., ψ → SLorψ . This way of interpreting the Lorentz subgroup of 
spin-base transformations is at the heart of understanding fields 
as representations of the Lorentz group. This viewpoint is held to 
argue that higher-spin fields (such as the metric) may eventually 
be composed out of a fundamental spinorial representation.

However, there is no such simple relation as Eq. (7) for general 
coordinate transformations. This is already obvious in flat space: 

1 The non-compact factor (real part of tr�μ) can be removed by fixing the deter-
minant of the spin metric, see [20,21].
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