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We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion 
collisions. These include moments of the distribution of the anisotropic flow in a single harmonic and 
also mixed moments, which contain the information on correlations between event planes of different 
harmonics. We explain how all these moments can be measured using just two symmetric subevents 
separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. 
For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear 
hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport 
(AMPT) model.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Large anisotropic flow has been observed in ultra-relativistic 
nucleus–nucleus collisions at the Relativistic Heavy-Ion Collider 
(RHIC) and the Large Hadron Collider (LHC) [1]. Anisotropic flow is 
an azimuthal (ϕ) asymmetry of the single-particle distribution [2]:

P (ϕ) = 1

2π

+∞∑
n=−∞

Vne−inϕ, (1)

where Vn is the (complex) anisotropic flow coefficient in the nth 
harmonic. One usually uses the notation vn for the magnitude: 
vn ≡ |Vn|. Anisotropic flow is understood as the hydrodynamic re-
sponse to spatial deformation of the initial density profile. This 
profile fluctuates event to event, which implies that the flow also 
fluctuates [3,4]. The recognition of the importance of flow fluctu-
ations has led to a wealth of new flow observables, among which 
are triangular flow [5] and higher harmonics, as well as correla-
tions between different Fourier harmonics [6].

Flow fluctuations provide a window [7] into both the early 
stage dynamics and the transport properties of the quark–gluon 
plasma. Specifically, the magnitudes of higher-order harmonics (V 3
to V 6) are increasingly sensitive to the shear viscosity to en-
tropy density ratio [8]. The distributions of V 2 and V 3 carry de-
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tailed information about the initial density profile [9,10], while V 4
and higher harmonics are understood as superpositions of linear 
and nonlinear responses, through which they are correlated with 
lower-order harmonics [11,12]. Ideally, one would like to mea-
sure the full probability distribution p(V 1, V 2, · · · , Vn) [13]. So far, 
only limited information has been obtained, concerning either the 
distribution of a single Vn [14] or specific angular correlations be-
tween different harmonics [6].

We propose to study the distribution p(V 1, V 2, · · · , Vn) via its 
moments in various harmonics [15,16], either single or mixed, 
and illustrate our point with realistic simulations using the AMPT 
model [17]. In Section 2, we recall how moments can be measured 
simply with a single rapidity gap [18]. This procedure is less de-
manding in terms of detector acceptance than the one based on 
several rapidity windows separated pairwise by gaps [6], and can 
be used to study two, three and even four-plane correlators. In 
Section 3, we list standard measures of flow fluctuations which 
have been used in the literature and express them in terms of 
moments. In Section 4, we introduce new observables which shed 
additional light on the origin of event-plane correlations. For in-
stance, a correlation between (V 2)

2 and V 4 has been observed, 
which increases with impact parameter [6]. This correlation is usu-
ally understood [19] as an effect of the non-linear hydrodynamic 
response which creates a V 4 proportional to (V 2)

2 [11,20,21]: the 
increase in the correlation is thus assumed to result from the in-
crease of elliptic flow [22]. We show that this hypothesis can be 
tested directly by studying how the correlation between (V 2)2 and 
V 4 is correlated with the magnitude of V 2. We also investigate in 
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a similar way the origin of the three-plane correlation between V 2, 
V 3 and V 5 [6].

2. Measuring moments

The statistical properties of Vn are contained in its moments, 
which are average values of products of Vn , of the form

M ≡
〈∏

n

(Vn)
kn

(
V ∗

n

)ln
〉
, (2)

where kn and ln are integers, and angular brackets denote an aver-
age value over events. Note that V ∗

n = V−n and V 0 = 1. Azimuthal 
symmetry implies that the only nontrivial moments satisfy [23]∑

n

nkn =
∑

n

nln. (3)

We now describe a simple procedure for measuring these mo-
ments, which applies to harmonics n ≥ 2, i.e., k1 = l1 = 0. (We do 
not study here moments involving directed flow V 1 [23].) We de-
fine in each collision the flow vector [24] by

Q n ≡ 1

N

∑
j

einϕ j , (4)

where the sum runs over N particles seen in a reference detec-
tor, and ϕ j are their azimuthal angles.1 One typically measures Q n
in two different parts of the detector (“subevents” [28]) A and B , 
which are symmetric around midrapidity and separated by a gap 
in pseudorapidity (i.e., polar angle) [29]. The moment (2) is then 
given by

M ≡
〈∏

n

(Vn)
kn

(
V ∗

n

)ln
〉
=

〈∏
n

(Q nA)kn
(

Q ∗
nB

)ln
〉
, (5)

which one can symmetrize over A and B to decrease the statis-
tical error. This configuration, with all factors of Q n on one side 
and all factors of Q ∗

n on the other side [18], suppresses nonflow 
correlations and self correlations as long as only harmonics n ≥ 2
are involved. An alternative procedure, where self correlations are 
explicitly subtracted, is described in [15].

In order to illustrate the validity of the method, we perform 
calculations using the AMPT model [17]. AMPT reproduces quite 
well LHC data for anisotropic flow (v2 to v6) at all centrali-
ties [30–32]. The implementation adopted in this paper [33] uses 
initial conditions from the HIJING 2.0 model [34], which contains 
nontrivial event-by-event fluctuations. Flow in AMPT is produced 
by elastic scatterings in the partonic phase. In addition, the model 
contains resonance decays, and thus nontrivial nonflow effects. 
In the present work, subevent A consists of all particles in the 
pseudorapidity range 0.4 < η < 4.8, and subevent B is symmetric 
around mid-rapidity, so that there is an η gap of 0.8 between A
and B [35].

The thumb rule for measuring moments is that smaller val-
ues of n are easier to measure because vn decreases with n for 
n ≥ 2. Lower order moments, corresponding to smaller values of kn
and ln , are also easier because higher-order moments are plagued 
with large variances, which entail large statistical errors.

3. vn fluctuations, event-plane correlations, standard candles

We first list observables which have been previously studied 
in the literature and explain how they can be measured using the 

1 The factor 1/N in Eq. (4) means that we choose to average over particles in each 
event [25], rather than summing [24,26] or dividing by 1/

√
N [27]. This choice is 

discussed at the end of Section 3.

Fig. 1. (Color online.) Scaled moments of the distribution of vn , (see Eq. (6)) for 
k = 2, 3, 4, as a function of centrality, measured with the number of participant 
nucleons. Results are for (a) elliptic flow, n = 2, and (b) triangular flow, n = 3, in 
Pb–Pb collisions at √s = 2.76 TeV. Open symbols represent AMPT calculations and 
closed symbols are obtained from ATLAS data [36].

method outlined in Section 2. Fluctuations of vn have been studied 
using cumulants [37–40], which are linear combinations of even 
moments of the distribution of vn , that is, 〈(vn)2k〉. These moments 
are obtained by keeping only one value of n and setting kn = ln = k
in Eq. (5). Fig. 1 displays the scaled moments

m(k)
n ≡ 〈v2k

n 〉
〈v2(k−1)

n 〉〈v2
n〉

, (6)

for k = 2, 3, 4 as a function of centrality for n = 2 and n = 3, 
obtained by using the subevent method of Section 2. The scaled 
moment m(k)

n thus defined is invariant if one multiplies vn by a 
constant, therefore it reflects the statistics of vn and should be 
essentially independent of the detector acceptance. AMPT calcula-
tions are in fair agreement with the ATLAS data [36], but tend to 
slightly overpredict m(k)

n , i.e., overestimate flow fluctuations.
If flow is solely created by fluctuations and if the statistics of 

these fluctuations is a 2-dimensional Gaussian [41], then m(k)
n = k. 

As can be seen in Fig. 1(b), m(k)
3 	 k for all centralities, as expected 

since v3 is only from fluctuations in Pb–Pb collisions.2 Similarly, 
as seen in Fig. 1(a), m(k)

2 is roughly equal to k for central collisions 
where v2 is mostly from Gaussian fluctuations, but decreases for 
mid-central collisions, corresponding to the emergence of a mean 
elliptic flow in the reaction plane [43].

Event-plane correlations [6] can also be expressed in terms 
of moments which can be measured using the method outlined 
in Section 2, as already discussed in Ref. [18]. Specifically, two-
plane correlations are Pearson correlation coefficients between 

2 Small deviations from Gaussian statistics are actually seen experimentally and 
result in a non-zero cumulant v3{4} [42]. Our simulation does not have enough 
statistics to detect this small non-Gaussianity.
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