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Correlation functions provide information on the properties of mesons in vacuum and of hot nuclear 
matter. In this work, we present a new method to derive a well-defined spectral representation for 
correlation functions. Combining this method with the quark gap equation and the inhomogeneous 
Bethe–Salpeter equation in the rainbow-ladder approximation, we calculate in-vacuum masses of light 
mesons and the electrical conductivity of the quark–gluon plasma. The analysis can be extended to other 
observables of strong-interaction systems.
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1. Introduction

Hadrons contribute to most of the visible matter in our real 
world and are undoubtedly an embodiment of dynamical chiral 
symmetry breaking (DCSB) and confinement. Current and future 
hadron physics facilities are focusing on hadron spectroscopy in 
order to shed light on the mysteries of quantum chromodynamics 
(QCD). On the other hand, it is believed that the Relativistic Heavy 
Ion Collider (RHIC) and the Large Hadron Collider (LHC) are able 
to create the quark–gluon plasma (QGP) state of the early Universe 
through a “mini-big bang”. This provides us with the possibility 
to study quark–gluon dynamics directly and to enrich our under-
standing of the QCD phase diagram. The transport coefficients of 
the QGP, which directly reflect details of the quark–gluon interac-
tion, are highly interesting from both experimental and theoretical 
viewpoints.

A unified description for physics in the two areas has been a 
central goal and great challenge for decades. Lattice QCD which is 
based on Monte Carlo simulations of quantum fields on finite dis-
crete spacetime lattices has achieved numerous significant results, 
however, it also has its own limitations [1,2]. Thus, relativistically 
covariant formalisms of continuum quantum field theory (QFT) are 
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still desirable. Among them, the Dyson–Schwinger equation (DSE) 
approach [3–5] is a framework that includes both DCSB and con-
finement [6]. Remarkably, at zero temperature, T = 0, a single DSE 
interaction kernel preserving the one-loop renormalization group 
behavior of QCD has been able to provide a unified description 
of the pion’s electromagnetic form factor [7], its valence-quark 
distribution amplitude [8], and numerous other quantities [9,10]. 
Therefore, it is of great significance to extend the DSE approach to 
further quantitative studies of hadron and QGP physics.

In the DSE framework, hadrons, i.e., color-singlet bound states 
of quarks, are described by the Bethe–Salpeter equation (BSE) or 
the Faddeev equation. Solving these equations requires the quark 
propagator, i.e., the solution of the gap equation, on the complex 
momentum plane. The analytical structure of the quark propagator 
strongly depends on the specified truncation scheme and interac-
tion model. This may lead to technical difficulties in the study of 
light-quark hadrons with masses above 1 GeV and meson bound-
states composed of one heavy and one light valence-quark. Those 
aspects of these problems connected with continuation into the 
complex plane can be solved using the perturbation theory inte-
gral technique [11,12], as illustrated in Ref. [7], whereas, as high-
lighted elsewhere [13], resolving the difficulties associated with 
heavy-light mesons requires bound-state kernels which are more 
sophisticated than that obtained in the simplest DSE truncation. At 
nonzero temperature, T �= 0, Matsubara frequencies are introduced 
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in imaginary-time thermal field theory [14]. Then, the situation is 
even more complicated since we do not know how to analytically 
continue Matsubara frequencies. Thus, it is a long-standing chal-
lenge to study in-medium hadrons.

At T �= 0, transport coefficients can be calculated from meson 
spectral functions through Kubo formulae. Solving for meson spec-
tral functions, one has to calculate Euclidean meson correlation 
functions. However, in terms of Green functions, the calculations 
are highly divergent. As we will see, the subtraction scheme which 
works at T = 0 is not applicable at T �= 0. Thus, the divergence 
problem precludes the study of transport properties.

In this paper, we propose a novel approach based on spectral 
analysis, which can systematically solve the problems mentioned 
before. Using our new approach, we can extend the DSE study 
to a much wider range of applications. To demonstrate this, we 
calculate the masses of the π - and ρ-meson in vacuum and the 
electrical conductivity of the QGP with a single DSE interaction 
kernel. Both the result for the electrical conductivity and the ap-
proach itself are essentially new.

2. Meson correlation functions

The retarded correlation function of local meson operators is 
defined as

�R
H (t, �x) = 〈 J H (t, �x) J †

H (0, �0)〉β, (1)

where β = 1/T and 〈...〉β denotes the thermal average. The opera-
tor J H has the following form

J H (t, �x) = q̄(t, �x)γH q(t, �x), (2)

with γH = 1, γ5, γμ, γ5γμ for scalar, pseudo-scalar, vector, and 
axial-vector channels, respectively. The meson spectral function is 
related to the imaginary part of the Fourier transform of the re-
tarded meson correlation function [15], namely,

ρH (ω, �p) = 2 Im �R
H (ω, �p). (3)

Note that the spectral function is positive semi-definite for pos-
itive frequency and that ρH (ω, �0) = −ρH (−ω, �0). In the zero-
momentum limit, �p = �0, the Euclidean correlation function which 
can be connected with the retarded correlation function by ana-
lytic continuation, i.e., ω + iε → iωn , has the following spectral 
representation,

�H (ω2
n) =

∞∫

0

dω2

2π

ρH (ω)

ω2 + ω2
n

− (subtraction), (4)

where ωn = 2nπ T , n ∈ Z , are the bosonic Matsubara frequencies. 
Note that an appropriate subtraction is required because the spec-
tral integral in Eq. (4) does not converge, i.e., ρH (ω → ∞) ∝ ω2

(see, e.g., Eq. (10) below).
Using the Fourier transform on Eq. (4), one can obtain the 

spectral representation of the Euclidean temporal correlation func-
tions without any subtraction. Lattice QCD generally adopts such 
a form [16]. However, it is not applicable for the DSE approach. 
As we will see, the numerical calculation of the Fourier trans-
form is actually very difficult because of divergences in computing 
�H (ω2

n) by the DSE approach. At T = 0, one has the so-called 
twice-subtracted dispersion relation [17] which is well-defined. At 
T �= 0, its straightforward extension reads

�H (ω2
n) = �H (0) + ω2

n�′
H (0) +

∞∫

0

dω2

2π

ω4
nρH (ω)

ω4(ω2 + ω2
n)

. (5)

The above equation takes care of the ultraviolet divergence. How-
ever, it generates a divergence in the infrared region because 
ρH (ω → 0) ∝ ω at T �= 0. Moreover, Eq. (5) is correct only if the 
derivatives of the Euclidean and retarded correlators can be con-
nected by analytical continuation. It can be proved that such an 
analytical continuation does not hold at T �= 0. At one-loop level, 
one can easily check that the analytical continuation breaks down 
for the zeroth component of the vector correlation function. Thus, 
Eq. (5) is ill-defined and useless at T �= 0.

Here we would like to present a new method to construct a 
well-defined spectral representation. We introduce a transform for 
a function f (x),

ÔN(x1, . . . , xN){ f } =
N∑

i=1

f (xi)

N∏
j �=i

1

xi − x j
, (6)

where x1 �= x2 �= . . . �= xN . If f (x) is an N-order polynomial, then 
ÔN+2{ f } = 0, e.g., Ô3{linear function} = 0. According to analyti-
cal properties of correlation functions in QFT [18], the subtractions 
in the dispersion relations are always polynomials of momenta (or 
Matsubara frequencies), e.g., the subtraction for the meson corre-
lation function is a linear function of ω2

n . Thus, using the 3-order 
transform for �H (ω2

n) in Eq. (4) or (5), i.e.,

�̂H (ω2
i ,ω2

j ,ω
2
k ) = Ô3(ω

2
i ,ω2

j ,ω
2
k ){�H }

= �H (ω2
i )

(ω2
i − ω2

j )(ω
2
i − ω2

k )

+ �H (ω2
j )

(ω2
j − ω2

i )(ω2
j − ω2

k )

+ �H (ω2
k )

(ω2
k − ω2

i )(ω2
k − ω2

j )
, (7)

where ωi, j,k are arbitrary unequal Matsubara frequencies, one 
finds that the subtraction in Eq. (4) or the linear term of ω2

n in 
Eq. (5) is canceled. Correspondingly, �̂H (ω2

i , ω2
j , ω

2
k ) can be ex-

pressed as the surviving integral of the spectral function,

�̂H (ω2
i ,ω2

j ,ω
2
k ) =

∞∫

0

dω2

2π

ρH (ω)

(ω2 + ω2
i )(ω2 + ω2

j )(ω
2 + ω2

k )
. (8)

Note that Eq. (8) is a novel version of the spectral representa-
tion for meson correlation functions. As we mentioned before, it 
is found that the traditional spectral representations, i.e., Eqs. (4)
and (5), are not well-defined because of the infrared or ultravio-
let divergence. However, through a simply power analysis, one can 
easily verify that the integral in Eq. (8) is divergence-free both in 
the ultraviolet and infrared regions. Furthermore, Eq. (7) is an ex-
act algebraic equation without any approximation. Therefore, by 
analytic continuation, Eq. (8) is actually consistent with the origi-
nal definition of the spectral function, i.e., Eq. (3). As we will see, 
since Eq. (8) is a well-defined expression directly formulated in 
frequency (or momentum) space, it is very suitable for analyzing 
Euclidean Green functions obtained by nonperturbative functional 
frameworks, e.g., the DSE approach. Namely, using Eq. (8) one is 
able to extract observables which are encoded in the spectral func-
tions from the nonperturbatively calculated correlation functions.

At first glance, Eq. (8) depends on three different frequencies 
(or momenta) and thus is a complicated three-dimensional equa-
tion. But it can be simplified easily. For numerical convenience, 
one can further introduce a one-variable correlator as �̃H (ω2

i ) =
�̂H (ω2

i , ω2
i+1, ω

2
i+2) (where ωi+1 = ωi + 2π T and ωi+2 = ωi +
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