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1. Introduction

It is a standard lore in the path integral formalism, that any 
result (such as, e.g., the Schwinger–Dyson equations, the Ward 
identities, etc.), that can be (formally) proven via change of in-
tegration variables, can equivalently be (formally) obtained via an 
integration by parts argument. And vice-versa. The latter method 
is typically the simplest. In 1996 it was shown in Ref. [1], by 
using integration by parts, how to formulate a higher-order field–
antifield formalism that is independent of gauge choice. In this 
paper we work out the explicit form of the change of variables 
that reproduces a given change of gauge in a higher-order formal-
ism. Perhaps not surprisingly, the construction relies on identifying 
appropriate homotopy operators.

2. The � operator

From a modern perspective [2] the primary object in the La-
grangian field–antifield formalism [3–5] is the � operator, which 
is a nilpotent Grassmann-odd differential operator

�2 = 0, ε(�) = 1, (2.1)
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and which depends on antisymplectic variables zA and their cor-
responding partial derivatives ∂B . Their commutator1 reads

[→
∂B , zA] = δA

B . (2.2)

3. Sp(2)-symmetric formulation

We mention for completeness that there also exists an
Sp(2)-symmetric Lagrangian field–antifield formulation [6]. This 
formulation is endowed with two Grassmann-odd nilpotent, an-
ticommuting �a operators

�{a�b} = 0, ε
(
�a) = 1,

a,b ∈ {1,2}. (3.1)

Often (but not always!) the resulting Sp(2)-symmetric formulas 
look like the standard formulas with Sp(2)-indices added and 
symmetrized in a straightforward manner. In this paper, we will 
usually focus on the standard formulation and only mention the 
corresponding Sp(2)-symmetric formulation when it deviates in a 
non-trivial manner.

1 The word super is often implicitly implied. For instance, the word commutator
means the supercommutator [F , G] ≡ F G − (−1)εF εG G F .
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4. Planck number grading for operators

Planck’s constant h̄ is here treated as a formal parameter (as 
opposed to an actual number) in the spirit of deformation quanti-
zation (as opposed to geometric quantization). The Planck number 
grading Pl for operators is defined via the rules

Pl(h̄) = 1, Pl
(
zA) = 0, Pl(

→
∂A) = −1, (4.1)

and extended to normal-ordered2 differential operators in the nat-
ural way. More precisely, a derivative ∂A inside an operator F gets 
assigned Planck number −1 (0) for the parts that act outside (in-
side) the operator, respectively. We mention for later convenience 
the superadditivity of Planck number grading

Pl(F G) ≥ Pl(F ) + Pl(G),

Pl
([F , G]) ≥ Pl(F ) + Pl(G) + 1, (4.2)

where the uppercase letters F and G denote operators.

5. Higher-order � operator

In the standard field–antifield formalism [3–5], the � operator 
is a second-order operator. (See also Section 18.) In the higher-
order generalization [1], which is the main topic of this paper, the 
� operator is assumed to have Planck number grading [7]

Pl(�) ≥ −2. (5.1)

Evidently, the Planck number inequality (5.1) means that the 
normal-ordered � operator is of the following triangular form3

� =
∞∑

n=−2

n+2∑
m=0

(
h̄

i

)n

�n,m,

�n,m = �
A1...Am
n,m (z)

→
∂Am . . .

→
∂A1 . (5.2)

The higher-order terms in the � operator can, e.g., be physically 
motivated as quantum corrections, which arise in the correspon-
dence between the path integral and the operator formalism.

6. Path integral

The (formal) path integral

Z X =
∫

dμwx, w ≡ e
i
h̄ W , x ≡ e

i
h̄ X , (6.1)

in the W –X-formalism [8–14] consists of three parts:

1. A path integral measure dμ = ρ[dz][dλ], where λα are La-
grange multipliers implementing the gauge fixing conditions, 
and zA ≡ {φα; φ∗

α} are the antisymplectic variables, i.e., fields 
φα and antifields φ∗

α . Here ρ = ρ(z) is a density with ε(ρ) = 0
and Pl(lnρ) ≥ −1.

2. A gauge-generating quantum master action W , which satisfies 
the quantum master equation (QME)4

2 Normal-ordering means that all the z’s appear to the left of all the ∂ ’s. 
Antinormal-ordering means the opposite.

3 In contrast to the original proposal [1], we also allow the three terms �−2,0, 
�−1,0 and �−1,1 with negative n in Eq. (5.2). The two last terms arise naturally 
in the Sp(2)-symmetric formulation [6,12]. The two first terms affect the classical 
master equation. See also Sections 18–19 for the second-order case.

4 The parenthesis in Eq. (6.2) is here meant to emphasize that the QME is an 
identity of functions (as opposed to differential operators), i.e., the derivatives in �
do not act outside the parenthesis. Note however that similar parenthesis will not 
always be written explicitly in order not to clog formulas. In other words, it must 
in general be inferred from the context whether an equality means an identity of 
functions or an identity of differential operators.

(�w) = 0, w ≡ e
i
h̄ W , Pl(W ) ≥ 0. (6.2)

The path integral (6.1) will in general depend on W , since W
contains all the physical information about the theory, such as, 
e.g., the original action, the gauge generators, etc. [15,16]. The 
triangular form (5.2) of the � operator implies that the QME 
(6.2) is perturbative in Planck’s constant h̄, i.e.,

Pl
(

w−1�(h̄, z, ∂)w
) = Pl

(
�

(
h̄, z, ∂ + i

h̄
(∂W )

))
≥ −2. (6.3)

Besides the triangular form (5.1), which is imposed to ensure 
perturbativity, there are additional “boundary” and rank con-
ditions to guarantee the pertinent classical5 master equation 
and proper classical master action S [15,16].

3. A gauge-fixing quantum master action X , which satisfies the 
transposed quantum master equation(
�T x

) = 0, x ≡ e
i
h̄ X , Pl(X) ≥ 0. (6.4)

The path integral (6.1) will in general not depend on X , cf. 
Section 13 and Section 16.

The transposed operator F T has the property that∫
dμ

(
F T f

)
g = (−1)ε f εF

∫
dμ f (F g). (6.5)

Here the lowercase letters f , g, . . . denote functions, while the up-
per case letters F , G, . . . denote operators. One can construct any 
transposed operator by successively apply the following rules

(F + G)T = F T + G T , (F G)T = (−1)εF εG G T F T ,(
zA)T = zA, ∂ T

A = −ρ−1∂Aρ. (6.6)

In particular the transposed operator �T is also nilpotent(
�T )2 = 0. (6.7)

The transposed derivative ∂ T
A satisfies a modified Leibniz rule:

∂ T
A ( f g) = (

∂ T
A f

)
g − (−1)εAε f f (∂A g). (6.8)

Let us mention for completeness that the � operator (which takes 
functions to functions) and the W –X-formalism can be recast in 
terms of Khudaverdian’s operator �E (which takes semidensities 
to semidensities) [17–25].

7. Higher-order quantum BRST operators

The quantum BRST operators σW and σX take operators into 
functions (i.e., left multiplication operators). They are defined as

σW F := h̄

i
w−1([�, F ]w

) (6.2)= h̄

i
w−1(�F w), (7.1)

σX F := h̄

i
x−1([�T , F

]
x
) (6.4)= h̄

i
x−1(�T F x

)
, (7.2)

respectively, where F is an operator. They are nilpotent, Grass-
mann-odd,

σ 2
W = 0 = σ 2

X , ε(σW ) = 1 = ε(σX ), (7.3)

and perturbative in the sense that

Pl(σW F ) ≥ Pl(F ) ≤ Pl(σX F ). (7.4)

In the Sp(2)-symmetric formulation the quantum BRST operators 
σ a

W and σ a
X carry an Sp(2)-index since the �a operator does.

5 The word classical means here independent of Planck’s constant h̄.
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