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Within contemporary hadron physics there are two common methods for determining the momentum-
dependence of the interaction between quarks: the top-down approach, which works toward an ab initio
computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-
up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of 
those equations in the matter sector that are relevant to bound-state properties. We unite these two 
approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by 
contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-
state hadron observables using a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the 
matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio
prediction of bound-state properties.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The last two decades have seen significant progress and phe-
nomenological success in the formulation and use of symmetry 
preserving methods in continuum-QCD for the computation of ob-
servable properties of hadrons [1–8]. A large part of that work 
is based on the rainbow-ladder (RL) truncation of QCD’s Dyson–
Schwinger equations (DSEs), which is the leading-order term in a 
symmetry preserving approximation scheme [9,10]. The RL trun-
cation is usually employed with a one-parameter model for the 
infrared behaviour of the quark–quark interaction produced by 
QCD’s gauge-sector [11,12]. It is accurate for ground-state vector-
and isospin-nonzero pseudoscalar-mesons constituted from light 
quarks and also for nucleon and � properties because correc-
tions in all these channels largely cancel owing to parameter-
free preservation of the Ward–Green–Takahashi (WGT) identities 
[13–16]. Corrections do not cancel in other channels, however; and 
hence studies based on the RL truncation, or low-order improve-
ments thereof [17,18], have usually provided poor results for all 
other systems.
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A recently developed truncation scheme [19] overcomes the 
weaknesses of RL truncation in all channels considered thus far. 
This new strategy, too, is symmetry preserving but it has an ad-
ditional strength; namely, the capacity to express dynamical chiral 
symmetry breaking (DCSB) nonperturbatively in the integral equa-
tions connected with bound-states. That is a crucial advance be-
cause, like confinement, DCSB is one of the most important emer-
gent phenomena within the Standard Model: it may be considered 
as the origin of more than 98% of the visible mass in the Uni-
verse. Owing to this feature, the new scheme is described as the 
“DCSB-improved” or “DB” truncation. It preserves successes of the 
RL truncation but has also enabled a range of novel nonperturba-
tive features of QCD to be demonstrated [20–23].

The widespread phenomenological success of this bottom-up 
approach to the calculation of hadron observables raises an im-
portant question; viz., are the one-parameter RL or DB interaction 
models, used in those equations relevant to colour-singlet bound-
states, consistent with modern analyses of QCD’s gauge sector and 
the solutions of the gluon and ghost gap equations they yield 
[24–34]? An answer in the affirmative will grant significant ad-
ditional credibility to the claim that these predictions are firmly 
grounded in QCD.
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2. Quark gap equation

In order to expose the computational essence of the bottom-
up DSE studies, it is sufficient to consider the gap equation for 
the dressed quark Schwinger function, S(p) = Z(p2)/[iγ · p +
M(p2)]:
S−1(p) = Z2

(
iγ · p + mbm) + Σ(p), (1a)

Σ(p) = Z1

Λ∫
dq

g2 Dμν(p − q)
λa

2
γμS(q)

λa

2
Γν(q, p), (1b)

where: Dμν is the gluon propagator1; Γν , the quark–gluon ver-

tex; 
∫ Λ

dq , a symbol representing a Poincaré invariant regularisation 
of the four-dimensional integral, with Λ the regularisation mass-
scale; mbm(Λ), the current-quark bare mass; and Z1,2(ζ

2, Λ2), 
respectively, the vertex and quark wave-function renormalisation 
constants, with ζ the renormalisation point, which is ζ = ζ2 :=
2 GeV here. Eqs. (1) are the starting point for all DSE predictions 
of hadron properties.

Significantly, owing to asymptotic freedom, there is no model 
dependence in the behaviour of the gap equation’s kernel on the 
domain A = {(p2, q2) | k2 = (p − q)2 � p2 � q2 � 2 GeV2} because 
perturbation theory and the renormalisation group can be used to 
show [38–40]:

g2 Dμν(k)Z1Γν(q, p)
k2�2 GeV2

= 4παs
(
k2)Dfree

μν (k)Z 2
2γν, (2)

where Dfree
μν (k) is the free-gauge-boson propagator and αs(k2) is 

QCD’s running coupling on this domain. Kindred results follow 
immediately for the kernels in the two-body Bethe–Salpeter equa-
tions relevant for meson bound-states [9,10,19].

Eq. (2) entails that the model input in realistic DSE studies is 
expressed in a statement about the nature of the gap equation’s 
kernel on A ; i.e., at infrared momenta. One writes

Z1 g2 Dμν(k)Γν(q, p) = k2G
(
k2)Dfree

μν (k)Z2Γ
A
ν (q, p) (3a)

= [
k2GIR

(
k2) + 4πα̃pQCD

(
k2)]

× Dfree
μν (k)Z2Γ

A
ν (q, p), (3b)

where α̃pQCD(k2) is a bounded, monotonically-decreasing regular 
continuation of the perturbative-QCD running coupling to all val-
ues of spacelike-k2; GIR(k2) is an assumed form for the interac-
tion at infrared momenta, with k2GIR(k2) � 4πα̃pQCD(k2) ∀k2 �
2 GeV2; and Γ A

ν (q, p) is an Ansatz for the dressed-gluon–quark 
vertex, with Γ A

ν (q, p) = Z2γν on A .
As reviewed elsewhere [5,6,8], successful explanations and pre-

dictions of numerous hadron observables are obtained with

I
(
k2) = k2G

(
k2), (4a)

G
(
k2) = 8π2

ω4
De−k2/ω2 + 8π2γmE(k2)

ln[τ + (1 + k2/Λ2
QCD)2] , (4b)

where: γm = 12/(33 −2N f ) [typically, N f = 4], ΛQCD = 0.234 GeV; 
τ = e2 − 1; and E(k2) = [1 − exp(−k2/[4m2

t ])]/k2, mt = 0.5 GeV. 

1 Landau gauge is typically used because it is, inter alia [35–37]: a fixed point 
of the renormalisation group; that gauge for which sensitivity to model-dependent 
differences between Ansätze for the fermion-gauge-boson vertex are least notice-
able; and a covariant gauge, which is readily implemented in numerical simulations 
of lattice regularised QCD. Importantly, capitalisation on the gauge covariance of 
Schwinger functions obviates any question about the gauge dependence of gauge 
invariant quantities.

The origin and features of Eq. (4b) are detailed in Ref. [11] so here 
we only highlight two key aspects: the Ansatz is consistent with 
the constraints described above and it involves just one free pa-
rameter.

The last point deserves further attention. At first glance there 
appear to be two free parameters in Eq. (4b): D , ω. How-
ever, computations show [11,12,41] that a large body of ob-
servable properties of ground-state vector- and isospin-nonzero 
pseudoscalar-mesons are practically insensitive to variations of 
ω ∈ [0.4, 0.6] GeV, so long as

(ςG)3 := Dω = constant. (5)

(The midpoint ω = 0.5 GeV is usually employed in calculations.) 
This feature also extends to numerous properties of the nucleon 
and � resonance [4,7]. The value of ςG is typically chosen in order 
to obtain the measured value of the pion’s leptonic decay con-
stant, fπ . It is striking that fitting just one parameter in a Gaußian
Ansatz for the gap equation’s kernel is sufficient to achieve an 
efficacious description of a wide range of hadron observables. It 
provides prima facie evidence that Eqs. (3), (4) are correct in prin-
ciple; and translates the question posed at the end of Section 1
into the following: “How does k2GIR(k2) in Eq. (4a) compare with 
today’s understanding of QCD’s gauge sector?”

That question has a subtext, however, because the fitted value 
of ςG depends on the form of Γ A

ν (q, p). We consider two choices 
herein: RL and DB. The RL truncation is obtained with

Γ A
ν (q, p) = Z2γν. (6)

It is summarised in Appendix A.1 of Ref. [42] and provides the 
most widely used DSE computational scheme in hadron physics. In 
this case one has [23]

ςRL
G = 0.87 GeV. (7)

The form of Γ DB
ν (q, p) is detailed in Appendix A.2 of Ref. [42]. 

It is consistent with constraints imposed by both the longitudinal 
and transverse WGT identities [43]. The DB kernel is connected 
with the most refined nonperturbative truncation that is currently 
available. It is therefore expected to be the most realistic. With this 
vertex, one has [23]

ςDB
G = 0.55 GeV. (8)

Following upon this discussion, we arrive at a pair of simple 
questions. Does an analysis of QCD’s gauge sector produce a run-
ning interaction-strength that is generally consistent with the form 
in Eqs. (4); and, if so, does it more closely resemble the function 
obtained with ςG in Eq. (7) or (8)?

3. RGI interaction kernel

In order to expose the quantity with which Eq. (4b) should be 
compared, we must provide some background. The Landau-gauge 
dressed-gluon propagator has the simple form

Dμν(k) = Dfree
μν (k)�

(
k2) =

[
δμν − kμkν

k2

]
�(k2)

k2
=: T k

μνD
(
k2);

(9)

and since we are interested in QCD’s gauge sector, the dressed-
ghost propagator will also be relevant:

F
(
k2) = − F (k2)

k2
. (10)

As we now explain, the scalar function in Eq. (10) is connected 
with the following gluon-ghost vacuum-polarisation:
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