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We investigate the modification of the pion self-energy at finite temperature due to its interaction with
a low-density, isospin-symmetric nuclear medium embedded in a constant magnetic background. To one
loop, for fixed temperature and density, we find that the pion effective mass increases with the magnetic
field. For the π−, interestingly, this happens solely due to the trivial Landau quantization shift ∼ |eB|,
since the real part of the self-energy is negative in this case. In a scenario in which other charged particle
species are present and undergo an analogous trivial shift, the relevant behavior of the effective mass
might be determined essentially by the real part of the self-energy. In this case, we find that the pion
mass decreases by ∼ 10% for a magnetic field |eB| ∼ m2

π , which favors pion condensation at high density
and low temperatures.

© 2013 The Authors. Published by Elsevier B.V.

1. Introduction

The behavior of hadronic matter in a medium under the in-
fluence of a strong external magnetic field can be very rich and
subtle, and has been the subject of intense investigation in the last
few years. In fact, in-medium strong interactions under extreme
magnetic fields are of experimental relevance in heavy ion colli-
sions and in astrophysics, exhibit a rich new phenomenology and
are amenable to lattice simulations. (For comprehensive reviews,
see Ref. [1].)

Even if every model calculation has predicted that large enough
magnetic fields, typically of the order of a few times m2

π , could
bring remarkable new features to the thermodynamics of strong
interactions, from shifting the chiral and the deconfinement
crossover lines in the phase diagram [2–15] to transforming the
vacuum into a superconducting medium via ρ-meson condensa-
tion [16,17], essentially all models fail to describe coherently the
available lattice data [18–21]. The reasons for that are still unclear,
although there are some indications that confinement plays a rel-
evant role [15,22], which is not captured in the usual low-energy
effective chiral models of QCD [23]. In any case, the situation calls
for theoretical investigations in more controlled setups, with less
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freedom and parameters to adjust. This approach has proved to be
fruitful in the large-Nc [22] and perturbative [24] limits of QCD: in
the former, the behavior of the critical temperature for deconfine-
ment was found to be in qualitative agreement with lattice data;
in the latter, a trivial chiral limit for the two-loop contribution to
the QCD pressure in a strong magnetic background was revealed.

Following this line of action, a natural extension is the study of
hadronic matter in the complementary, low-energy sector, in the
presence of a strong magnetic field, in a controlled setup. Thus,
since we are interested in the low-density, low-temperature sector
of the phase diagram of nuclear matter, we adopt the framework
of chiral perturbation theory, which represents a powerful tool to
study the low-energy regime of the pion–nucleon physics [25].

It is the purpose of this work to investigate some properties
of isospin-symmetric nuclear matter in the limit of low density
and temperature, embedded in a strong magnetic background. In
particular, we study the modifications of the spectrum of the low-
est energy degree of freedom, the pion, due to the interaction
with nucleons and the constant magnetic field. More specifically,
we compute the pion effective mass in the presence of a constant
magnetic field to one loop. (Even if we do not address the phase
diagram here, it should be mentioned that the inclusion of nucle-
ons, and pion–nucleon interactions, proved to be necessary for a
satisfactory description of the behavior of the deconfinement crit-
ical temperature as a function of the pion mass and isospin [26].)
For this purpose, we consider fully relativistic chiral perturbation
theory as a framework for our computation. This is needed to
define consistently the fermion propagators in a magnetic back-
ground. At the same time, this work extends a previous treatment
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Fig. 1. Diagrams contributing to the lowest-order in-medium pion self-energy.
The small dotted vertex corresponds to the one-pion exchange part of the La-
grangian in Eq. (2), while the squared one to the two-pion exchange in the
Weinberg–Tomozawa term.

on the calculation of the fermion self-energy in relativistic chiral
perturbation theory [27].

In-medium pion properties have been extensively investigated,
both in finite systems, i.e. pionic atoms [28,29], and in infinite
nuclear matter. In the latter, an interesting aspect of pion phe-
nomenology is represented by pion condensation at high densities,
introduced by Migdal [30], which is a consequence of the fact that
at high density the electron chemical potential grows until it is
favorable for a neutron on the top of the Fermi sea to turn into a
proton and a (negatively charged) pion. On other hand, the interac-
tion of the pion with the background matter can enhance its self-
energy and consequently the pion condensation threshold density.
This issue is still open and requires more investigation because of
its implications in the context of compact stars phenomenology
[31–33]. We shall see in the sequel that the in-medium modi-
fication of the (negatively charged) pion self-energy due to the
presence of a strong magnetic background might lead to relevant
phenomenological consequences.

The Letter is organized as follows. In Section 2, we consider the
relativistic formulation of the theory, since in this framework it is
possible to define the Green’s function of the theory in the pres-
ence of a constant magnetic background in a consistent fashion. In
Section 3, we compute the lowest-order pion self-energy for the
three charge eigenstates in isospin-symmetric nuclear matter. In
Section 4, we compute the in-medium effective mass of the pion
and its dependence on the value of the applied magnetic field. Fi-
nally, in Section 5, we summarize our conclusions. We use natural
units h̄ = c = kB = 1. Four-vectors are denoted by capital letters,
for instance Pμ = (p0,p).

2. Reminder of the pion effective mass

The low-energy phenomenology of pions in nuclear matter is
well described in terms of a chirally invariant pion–nucleon inter-
action Lagrangian, expanded in powers of the low-energy scale of
the theory, i.e. the ratio of the pion momentum or mass over (4π
times) the pion decay constant:

Lπ N = L(1)
π N +L(2)

π N + · · · (1)

where the leading order, L(1)
π N , reads [25]

L(1)
π N = −Ψ̄

[
g A

2 fπ
γ μγ5τ · ∂μπ

+ 1

4 f 2
π

γ μτ · (π × ∂μπ)

]
Ψ. (2)

Here τ is the vector of Pauli matrices in isospin space, π is the
isotriplet of pions, fπ the pion decay constant and g A is the axial-
vector coupling.

The diagrams contributing to the pion self-energy from the La-
grangian (2) are shown in Fig. 1. The former is obtained from the
Weinberg–Tomozawa term, while the latter comes from the one-
pion exchange Lagrangian. Due to the coupling of the charge to the

Fig. 2. Pion Schwinger–Dyson equation. Here D0 is the free pion propagator and
D is the full one. The diagram in the previous equation denotes the sum of all
one-particle irreducible (1PI) diagrams. Q μ = (ω,q) is the pion four momentum.

vector potential, in the case of a constant magnetic background we
need to compute separately those diagrams for different pion and
nucleon charge eigenstates.

Formally, the self-energy can be defined from the pion Schwin-
ger–Dyson equation [34], displayed in Fig. 2.

Pionic modes of excitation in nuclear matter are obtained as
solutions ω(q) of the following equation

ω2 − q2 − m2
π + Π(ω,q) = 0, (3)

and in the limit of vanishing momenta this solution corresponds
to the effective pion mass

m∗ 2
π = m2

π − ReΠ
(
m∗

π ,q = 0
)
. (4)

In absence of a magnetic background, it can be shown that the
lowest-order (LO) contribution to the effective mass in (4) vanishes
in isospin-symmetric nuclear matter [35].

In asymmetric nuclear matter, the LO self-energy of the (neg-
atively charged) pion receives a contribution from the Weinberg–
Tomozawa diagram, given by [36]

ΠWT(ω,q = 0) = ω

2 f 2
π

(ρp − ρn). (5)

In the presence of a magnetic background, the pion charge
eigenstates Eq. (4) have to be modified (due to the Landau level
quantization) to

m∗ 2
π = m2

π − ReΠ
(
m∗ 2

π ,q = 0;B
) + (2n + 1)|eB|, (6)

where B is the magnetic field and n is the index of the Landau
level.

In what follows we focus on the case of symmetric nuclear mat-
ter in the presence of a constant magnetic background. Thus, any
deviation from zero of the LO pion self-energy will give a contri-
bution to the effective pion mass in a magnetic background. Since
we are dealing with dilute nuclear matter at low temperatures, we
neglect the contribution of anti-nucleons. Moreover, we choose the
x3-axis to be parallel to the magnetic field and |eB| = eB , e being
the proton electric charge. In order to simplify the calculation, we
assume the regime of strong magnetic fields, in which one can
apply the lowest-Landau-level (LLL) approximation to simplify the
propagators. We neglect the effect of the anomalous magnetic mo-
ment of protons and neutrons. The calculation is carried out in the
Landau gauge.

3. Pion self-energy in a constant magnetic field

For the negatively charged pion, the first diagram in Fig. 1 leads
to the following contribution:

ΠWT(Q ) = ΠWT
p (Q ) − ΠWT

n (Q ), (7)

where the first term is the proton loop contribution, which by us-
ing the Furry representation at finite temperature for the proton
propagator [37] reads

ΠWT
p (Q ) = 1

f 2
π

|eB|
4π2

+∞∫
−∞

dp3 nF (E3 − μ)
pL · qL

2E3
, (8)
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