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We show that, in the weak field limit, at large separations, in sharp contrast to General Relativity
(GR), all massive gravity theories predict distance-dependent spin alignments for spinning objects. For
all separations GR requires anti-parallel spin orientations with spins pointing along the line joining
the sources. Hence total spin is minimized in GR. On the other hand, while massive gravity at small
separations (mgr � 1.62) gives the same result as GR, for large separations (mgr > 1.62) the spins become
parallel to each other and perpendicular to the line joining the objects. Namely, the potential energy is
minimized when the total spin is maximized in massive gravity for large separations. We also compute
the spin–spin interactions in quadratic gravity theories and find that while at large separations GR result
is intact, at small separations, spins become perpendicular to the line joining sources and anti-parallel to
each other.

© 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Consider two widely separated spinning massive objects (for
example two galaxies or galaxy clusters) that interact via gravity:
What is the minimum energy configuration for their spin orien-
tations, and how does the result depend on whether the graviton
is massive or not? In this work we will compute the spin–spin
interactions of point-like objects in massive gravity. We will show
that introducing a small graviton mass gives the highly unexpected
result of changing the spin orientations of sources from the one
predicted in GR. Arguably, massive gravity is the most natural
modification of GR that has implications in the overall dynamics
– accelerated expansion – of the universe and hence a detailed
study of gravitomagnetic effects such as the one done in this work
is needed.

Before we give a detailed derivation of the results in the next
section in D-dimensional spacetimes and higher curvature the-
ories, let us summarize our findings here for the case of D =
3 + 1 for GR and massive gravity. Consider two localized spinning
point-like sources described with the components of the energy-
momentum tensor
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(B. Tekin).

T00 = maδ
(3)(�x − �xa),

T i
0 = −1

2
J k
a ε ikj∂ jδ

(3)(�x − �xa), (1)

where a = 1,2. Here ma is the mass and �Ja is the spin of the
particle. Then, working in a flat background, from the tree-level
diagram of one graviton exchange, we can calculate the potential
energy as

U = −4πG

t

∫
d4x d4x′ T μν(x)Gμναβ

(
x, x′)T αβ

(
x′), (2)

where Gμναβ(x, x′) is the Green’s function of the theory at hand
and t is a large time that will drop at the end. In GR this compu-
tation gives

UGR = − Gm1m2

r
− G

r3

[�J 1 · �J 2 − 3�J 1 · r̂ �J 2 · r̂
]
, (3)

where �r = rr̂ is the distance between the two sources. Spin–spin
part can be attractive or repulsive depending on the spin orienta-
tions. Maximum value of �J 1 · �J 2 −3�J 1 · r̂ �J 2 · r̂, that is the minimum
of the potential energy is achieved when �J 1 and �J 2 are anti-
parallel and point along r̂ as depicted in Fig. 1. That means in GR,
for any given r, potential energy is minimized for anti-parallel spin
orientations, if we neglect the tidal and orbital angular momentum
effects. (The computation here is of course not a good approxima-
tion for close binary systems, such as two neutron stars etc., but
it is a valid approximation for two widely separated galaxies or
galaxy clusters.) Let us give the results of the same computation
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Fig. 1. Minimum energy configuration in GR, as long as weak field limit is applicable.

Fig. 2. Minimum energy configuration in massive gravity for mgr � 1.62.

Fig. 3. In massive gravity, at large separations, the potential energy is minimized
when the spins are perpendicular to the line joining the sources.

in massive gravity. At this point one might worry about which
massive gravity to use. The crucial point is that in the weak field
limit around flat space, any viable (non-linear, ghost-free) massive
gravity theory reduces to the Fierz–Pauli (FP) theory that describes
5 degrees of freedom. Hence the following computation is a uni-
versal, weak field, large distance, prediction of all massive gravity
theories built to describe 5 degrees of freedom around flat space.
The Lagrangian density of the linear massive gravity is

LFP = 1

16πG

[
R − m2

g

4

(
h2
μν − h2)] +Lmatter, (4)

where mg is the mass of the graviton, we found that at the lowest
order the potential energy is

UFP = −4

3
Gm1m2

e−mgr

r
− Ge−mgr(1 + mgr + m2

gr2)

r3

×
[

�J 1 · �J 2 − 3�J 1 · r̂ �J 2 · r̂
(1 + mgr + 1

3 m2
gr2)

(1 + mgr + m2
gr2)

]
. (5)

It is clear that, in contrast to the GR result, in massive gravity de-
pending on the distance between the sources, spin–spin part of the
potential energy is minimized for different spin orientations deter-
mined by the maximization of the function (see Appendix A for
details)

f (θ,ϕ1,ϕ2) = cos(θ) − 3
(1 + x + 1

3 x2)

(1 + x + x2)
cos(ϕ1) cos(ϕ2), (6)

where x = mgr and θ is the angle between the spins and ϕi is the
angle between �J i and �r. Maximization of (6) yields: anti-parallel

spins for x � 1+√
5

2 ≈ 1.62 as in the case of GR depicted in Fig. 2.

On the other hand, for x > 1+√
5

2 ≈ 1.62, one gets parallel spins
which are perpendicular to the line joining the sources as in Fig. 3.

The important conclusion one learns is that while in GR min-
imal potential energy is realized for minimum total spin at all
separations, in massive gravity potential energy is minimized for
maximum total spin for mgr > 1.62.1

1 We would like to thank A. Dane whose simulation of the spin–spin interaction
led us to realize this point where spins suddenly change orientations. Note that the
same point that is the “Golden Number” arises when one considers stable circular
orbits in the Newtonian theory with a Yukawa potential. Namely, stable circular

orbits exist for x � 1+√
5

2 . We thank F. Öktem for this point.

2. Derivation of the results

To derive the above results and their D-dimensional generaliza-
tions in GR, massive gravity and quadratic gravity, it is somewhat
more convenient to use the propagator found in [1] to repre-
sent (2). In order to avoid repeating the computations of all three
theories let us consider the most general theory which includes
these theories:

S =
∫

dD x
√−g

{
1

κ
R − 2Λ0

κ
+ αR2 + βR2

μν

+ γ
(

R2
μνσρ − 4R2

μν + R2)}

+
∫

dD x
√−g

{
−m2

g

4κ

(
h2
μν − h2) +Lmatter

}
. (7)

In [1], we computed the scattering amplitude (A = Ut) correspond-
ing to a graviton exchange in this theory and presented it with
sufficient detail, hence we quote here the result:

4A = 2T ′
μν

{
(β�̄+ a)

(
�

(2)
L − 4Λ

D − 2

)
+ m2

g

κ

}−1

T μν

+ 2

D − 1
T ′

{
(β�̄+ a)

(
�̄+ 4Λ

D − 2

)
− m2

g

κ

}−1

T

− 4Λ

(D − 2)(D − 1)2
T ′

{
(β�̄+ a)

(
�̄+ 4Λ

D − 2

)
− m2

g

κ

}−1

×
{
�̄+ 2ΛD

(D − 2)(D − 1)

}−1

T

+ 2

(D − 2)(D − 1)
T ′

{
1

κ
+ 4Λ f − c�̄− m2

g

2κΛ
(D − 1)

}−1

×
{
�̄+ 2ΛD

(D − 2)(D − 1)

}−1

T , (8)

where we have dropped the integral signs not to clutter the no-
tation and also to properly account all those theories in the cor-
responding limits, we have provisionally introduced an effective
cosmological constant which is determined via the quadratic equa-
tion Λ−Λ0

2κ + f Λ2 = 0. The other parameters that appear above are
defined as

f ≡ (Dα + β)
(D − 4)

(D − 2)2
+ γ

(D − 3)(D − 4)

(D − 1)(D − 2)
, (9)

a ≡ 1

κ
+ 4ΛD

D − 2
α + 4Λ

D − 1
β + 4Λ(D − 3)(D − 4)

(D − 1)(D − 2)
γ , (10)

c = 4(D − 1)α + Dβ

D − 2
. (11)

With all these parameters at hand, one covers all the three theo-
ries that we are interested in. For example the result for General
Relativity follows from m2

g = α = β = γ = 0 which yield a = 1
κ and

f = c = 0. For flat backgrounds one has

4A = −2κT ′
μν

(
∂2)−1

T μν + 2κ

D − 2
T ′(∂2)−1

T . (12)

More explicitly the last equation is

4A = −2κ

∫
dD x

∫
dD x′ Tμν

(
x′)G

(
x, x′)T μν(x)

+ 2κ

(D − 2)

∫
dD x

∫
dD x′ T

(
x′)G

(
x, x′)T (x), (13)
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