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We investigate the influence of the isospin asymmetry on the phase structure of quark matter near
the chiral critical point systematically using a generalized version of Ginzburg–Landau approach. The
effect has proven to be so profound that it brings about not only a shift of the critical point but also a
rich variety of phases in its neighborhood. In particular, there shows up a phase with spatially varying
charged pion condensate which we name the “solitonic pion condensate” in addition to the “chiral defect
lattice” where the chiral condensate is partially destructed by periodic placements of two-dimensional
wall-like defects. Our results suggest that there may be an island of solitonic pion condensate in the low
temperature and high density side of QCD phase diagram.

© 2013 The Author. Published by Elsevier B.V.

1. Introduction

The chiral critical point (CP) in QCD phase diagram is the sub-
ject of extensive theoretical/experimental studies [1]. It was shown
in [2,3] that once the possibility of inhomogeneity is taken into
account, the CP turns into a Lifshitz critical point (LCP) where
a line of the chiral crossover meets two lines of second-order
phase transitions surrounding the phase of an inhomogeneous chi-
ral condensate. The inhomogeneous state can be viewed as an or-
dered phase separation, produced via the compromise between
quark–antiquark attraction and a pair breaking due to imbalanced
population of quarks and antiquarks [4,5]. Such inhomogeneity ap-
pears rather commonly in a wide range of physics; the Abrikosov
lattice [6] and the Fulde–Ferrell–Larkin–Ovchinnikov superconduc-
tors [7] are such examples.

In this Letter, we address the question what is the possible im-
pact of the effect of an isospin asymmetry on the LCP. For bulk sys-
tems such as matter realized in compact stars, the flavor symmetry
breaking is caused mainly by a neutrality constraint that should be
imposed to prevent the diverging energy density. The effect leads
to a rich variety of color superconducting phases at high density
[8]. On the other hand, at large isospin density QCD vacuum devel-
ops a charged pion condensate (PC) as soon as |μI| > mπ with mπ

and μI being the vacuum pion mass and the isospin chemical po-
tential [9]. The PC has a rich physical content including a crossover

from a Bose–Einstein condensate of pions to a superfluidity of the
Bardeen–Cooper–Schrieffer type, and has been extensively studied
using effective models [10].

We focus here how the neighborhood of CP is to be modified
by inclusion of isospin density. To this aim, we use the generalized
Ginzburg–Landau (GL) approach developed in [2,4] which can give
rather model-independent predictions near the CP. Since we are
interested in the response of the CP and its vicinity against μI �= 0,
our strategy is to take μI as a perturbative field and expand the
GL functional with respect to it. The inclusion of μI further brings
new GL parameters, but they can be evaluated within the quark
loop approximation [2,4] since gluons are insensitive to isospin
charge. What we will find is that the isospin asymmetry dramat-
ically modifies the neighborhood of CP bringing about new multi-
critical points. Accordingly, an inhomogeneous version of charged
pion condensate dominates a major part of phase diagram.

2. Generalized Ginzburg–Landau approach

We consider two-flavor QCD, and assume the existence of
a tricritical point (TCP) in the (μ, T )-phase diagram in the chi-
ral limit at vanishing μI . We take the chiral four vector φ =
(σ ,π) ∼ (〈q̄q〉, 〈q̄iγ5τq〉) as a relevant order parameter of the sys-
tem. A minimal GL description of TCP requires the expansion of
the thermodynamic potential up to sixth order in φ. The result-
ing chiral O(4) invariant potential expanded up to the sixth order
is, with incorporating the derivative terms as well [2,4]: ω[φ(x)] =∑

n=1,2,3 ω2n[φ(x)], where

ω2
[
φ(x)

] = α2

2
φ(x)2, ω4

[
φ(x)

] = α4

4

(
φ4 + (∇φ)2),
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ω6
[
φ(x)

] = α6

6

(
φ6 + 3

[
φ2(∇φ)2 − (φ,∇φ)2]

+ 5(φ,∇φ)2 + 1

2
(�φ)2

)
. (1)

The current quark mass adds to this a term ω1[σ(x)] = −hσ(x)

which explicitly breaks O(4) symmetry down to O(3), and thus
makes the condensate align in the direction φ → (σ ,0). We
use α

−1/2
6 as a unit of an energy dimension. Accordingly we re-

place α6 with 1, and every quantity is to be regarded as a dimen-
sionless. Then via scaling φ → φh1/5, x → xh−1/5 together with
α2 → α2h4/5, α4 → α4h2/5, we can get rid of h in ω apart from
a trivial overall scaling factor h6/5, i.e., ω → ωh6/5. Then we set
h = 1, and retain the original letters φ, x, α2, α4 and ω hereafter,
but we should keep in mind that they should scale as h1/5, h−1/5,
h4/5, h2/5, h6/5 respectively.

We assume that σ(x) is spatially varying in one direction, z [2].
The Euler–Lagrange equation (EL), δω/δφ(z) = 0, becomes

6h = σ (4)(z) − 10
(
σ 2σ ′′ + σ

(
σ ′)2) − 3α4σ

′′

+ 6σ 5 + 6α4σ
3 + 6α2σ ,

(2)

where h is temporarily recovered to remind us that the term
comes from the mass term. We try the ansatz [3]

σ(z) = A sn(kz − b/2, ν)sn(kz + b/2, ν) + B, (3)

where “sn” is the Jacobi elliptic function with ν the elliptic mod-
ulus, and k, b, A, B are real parameters. We call the state the
“chiral defect lattice” (CDL).1 This is a spatially modulating state
having a period �p = 2K (ν)/k. Let us first show that the ansatz ac-
tually provides a one-parameter family of solution to the EL (2)
when suitable conditions for A, B , k and b are met. First, we
note from (3), sn(kz, ν)2 = (σ (z)−B)/A+b2

1+νb2(σ (z)−B)/A with b2 ≡ sn(b/2, ν).
The fact that f (z) = sn(kz, ν) obeys the Jacobi differential equa-
tion ( f ′)2 = k2(1 − f 2)(1 − ν2 f 2) translates into

d0 = (
σ ′)2 + d1σ + d2σ

2 + d3σ
3 + d4σ

4, (4)

where {d0,d1,d2,d3,d4} are functions of A, B , b, k and ν . We here
give the expressions for d3 and d4 only,

d3 = 4d4

(
A

cn(b, ν)dn(b, ν)

ν2sn2(b, ν)
− B

)
, d4 = −k2ν4sn2(b, ν)

A2
. (5)

Differentiating (4) with respect to z and dividing the result by 2σ ′ ,
we obtain

−d1

2
= σ ′′(z) + d2σ(z) + 3d3

2
σ(z)2 + 2d4σ(z)3. (6)

Differentiating this twice we have

0 = σ (4)(z) + 6d4σ
2σ ′′ + 12d4σ

(
σ ′)2 + d2σ

′′

+ 3d3
(
σ ′)2 + 3d3σσ ′′.

(7)

Adding to this, ( f0 + f1σ(z))×(4) and (g0 + g1σ(z)+ g2σ(z)2)×(6)
with f0, f1, g0, g1, g2 being arbitrary constants, we obtain a wider
fourth-order differential equation. Then by tuning f0 = g1 = −3d3,
we can get rid of unnecessary σ ′2 and σσ ′′ terms, and setting
f1 = −10 − 12d4, g2 = −10 − 6d4, g0 = −d2 − 3α4 leads to

1 The ansatz is called the “solitonic chiral condensate” in [3]. As we will see later,
the state can be viewed as periodically placed wall-like defects of chiral condensate,
so we use the term “CDL” here.

γ
({di},α4

) = σ (4)(z) − 10
(
σ 2σ ′′ + σ

(
σ ′)2) − 3α4σ

′′

− 6d4(5 + 4d4)σ
5 − 5d3(5 + 6d4)σ

4

+
∑

n=3,2,1

βn
({di},α4

)
σ n, (8)

where γ and βn (n = 1,2,3) are simple algebraic functions of
d0,d1,d2,d3,d4, and α4. Matching the coefficients of σ 5 and σ 4

with those in (2) leaves two choices; (d3,d4) = (0,−1) or (0,

−1/4). It turns out that the latter cannot satisfy the remaining
constraints so we choose (d3,d4) = (0,−1) which, with (5), con-
strains A and B as

A = kν2sn(b, ν), B = k
cn(b, ν)dn(b, ν)

sn(b, ν)
. (9)

The conditions β3 = 6α2 and β2 = 0 are then automatically sat-
isfied, so we are left with two constraints 6h = γ and 6α2 = β1.
Now that {di} are functions of three variables {k, ν,b}, the two
conditions fix two of them, for instance, {k,b} at a fixed el-
liptic modulus ν . Hence, the ansatz (3) together with (9) gives
a one-parameter solution to (2). To our knowledge, this is the first
demonstration of the fact that (3) constitutes a solution also in the
GL functional approach which could be applied in a wide range of
physics. The parameter ν is to be determined via the minimization
of thermodynamic potential Ω , the spatial average of the energy
density over one period �p = 2K (ν)/k:

Ω(ν;α2,α4) = 1

�p

�p/2∫
−�p/2

dz ω
[
σ(z)

]
. (10)

Let us briefly check the two extreme limits, ν → 1 and ν → 0.
First when ν → 1,

σ(z) → σsd(z) = k

th(b)

(
1 − th2(b) fdef.(kz,b)

)
, (11)

where the subscript “sd” refers to a “single-defect”, and fdef.(kz,b)

≡ 1−th(kz+b/2)th(kz−b/2). This describes a defect in chiral con-
densate, represented by a soliton–antisoliton pair located at z = 0.
The homogeneous value gets eventually recovered as |z| → ∞:
σsd(±∞) ≡ σL = k/th(b). Since k = σLth(b), we regard σsd(z) as
a function of z parametrized by σL and b. On the other hand, when
ν → 0 the ansatz reduces to, retaining up to the first non-trivial
order in ν ,

σ(z) → σsin(z) = k cot(b) − ν2 k sin(b)

2
cos(2kz). (12)

This is the state where chiral condensate is about to develop a rip-
ple sinusoidal wave on the homogeneous background. We denote
the background chiral condensate as k cot(b) ≡ σS , σsin(z) is now
viewed as a function of z parametrized by σS , k, and vanishing ν .

3. Phase structure at μI = 0

We compute the phase diagram via minimization of (10). The
result is displayed in Fig. 1. The CP is indeed realized as the LCP
where the three phases meet; the CDL phase with σ(z), the chi-
ral symmetry broken (χSB) phase with a homogeneous conden-
sate σL , and the nearly symmetry-restored phase characterized by
a smaller condensate σS . For illustration, also shown by a solid line
is the line of would-be first-order transition. Fig. 2 shows how σ(z)
smoothly interpolates between σL and σS along α4 = −4. Dis-
played in the left panel is the max amplitude maxz[σ(z)] as
a function of α2. Abrupt drop in σ indicated by a solid line shows
the location of would-be first-order transition which would have
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