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From the operator product expansion the gluon condensate controls a certain power law correction to
the ultraviolet behavior of the gauge theory. This is reflected by the asymptotic behavior of the effective
gluon mass function as determined by its Schwinger–Dyson equation. We show that the current state of
the art determination of the gluon mass function by Binosi, Ibanez and Papavassiliou points to a vanishing
gluon condensate. If this is correct then the vacuum energy also vanishes in massless QCD. This result
can be interpreted as a statement about a softness in the ultraviolet behavior and the consistency of this
behavior with a mass gap.

© 2013 The Author. Published by Elsevier B.V.

Schwinger–Dyson (SD) equations provide a useful tool for the
study of dynamical symmetry breaking by providing informa-
tion about the momentum dependent dynamical mass functions.
The existence of these mass functions signals a mass gap, a distor-
tion of the theory in the infrared. The mass function also specifies
power law corrections to the asymptotic ultraviolet behavior of the
theory. These corrections in turn are related via the operator prod-
uct expansion to condensates, vacuum expectation values of local
operators. For example in massless QCD the dynamical quark mass
function solution of the SD equation has an asymptotic behavior
that points to a quark condensate appearing in the operator prod-
uct expansion of two quark fields. The condensate merely encodes
a particular effect that the mass gap has on the ultraviolet behav-
ior of the theory.

In contrast to the quark condensate the gluon condensate does
not break a symmetry of the theory, and the result is that the
perturbative contribution is sensitive to any dimensionful regulator
(a UV cutoff). Such an additional explicit breaking of scale invari-
ance can be avoided with a scale invariant regulator, e.g. dimen-
sional regularization, and in this case the perturbative contribution
vanishes at any finite order.1 But even with the choice of a scale
invariant regulator, a resummation of a class of diagrams via the
renormalization group leads to the infrared Landau pole at a scale
Λ defined by
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1 A related example is the vacuum energy in a free massless field theory, which

vanishes by Lorentz and scale invariance. Spurious contributions arise unless a scale
invariant regulator is chosen. In the same way we avoid spurious contributions to
the gluon condensate.

ln

(
Λ

μ

)
=

∞∫
g(μ)

dx

β(x)
. (1)

This dimensional transmutation is taken as a signal of a non-
vanishing gluon condensate of order Λ4. It is also argued that the
gluon condensate is needed to cancel or correct particular ambigu-
ities in perturbation theory (renormalons etc.) that are also related
to the Landau pole. All this assumes that the Landau pole is more
than just an artifact of resummed perturbation theory. Indeed a va-
riety of approaches [1–10] indicate that the Landau pole does not
survive nonperturbative effects that cause the coupling strength to
saturate at a finite value in the infrared. Then the Λ determined
by (1) vanishes. Lattice studies [11–16] have verified the associ-
ated damping of gluonic fluctuations in the infrared as described
by an effective gluon mass function. This is the view we adopt
here, in which case a different approach to the gluon condensate
is needed.

In the same way as for the quark condensate, we may view the
gluon condensate as just encoding a particular correction to the
ultraviolet behavior due to the presence of the mass gap. We com-
pare the operator product expansions for the quark and gluon
mass functions (Σ(p2) and m2(p2) respectively) [17,18].

lim
−p2→∞

Σ
(

p2) = c1(p/μ)mψ(μ) + c2(p/μ)〈ψψ〉μ
p2

+ · · · , (2)

lim
−p2→∞
mψ→0

p2m2(p2) = a1(p/μ)
〈
Gαβ Gαβ

〉
μ

+ a2(p/μ)〈ψψ〉2
μ

p2
+ · · · . (3)
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Shown in these expansions are the leading gauge invariant terms
in the asymptotic behavior of the mass functions. We comment on
possible gauge dependent contributions below. The two conden-
sates are purely nonperturbative and each has a renormalization
scale dependence. We see the sense in which the gluon conden-
sate is the analog of mψ rather than 〈ψψ〉, since mψ and the
gluon condensate govern the leading term in the respective OPE.
Once the bare quark mass is set to zero then mψ(μ) = 0 remains
consistent with the SD result for Σ(p2). We note that the quark
condensate that is generated contributes only to the subleading
terms in both expansions.

The similarity of the role of the leading terms of the OPEs also
shows up in the trace of the energy-momentum tensor

Θα
α = β

2g
Gαβ Gαβ + mψ(1 + γm)ψψ. (4)

This operator statement gives a relation between the vacuum ex-
pectation values 〈Θα

α 〉, 〈Gαβ Gαβ 〉μ and 〈ψψ〉μ , all of which are
taken to vanish in perturbation theory. 〈Θα

α 〉 is a physical quan-
tity independent of μ since it is four times the vacuum energy
by Lorentz invariance. The μ dependence of the other two con-
densates must then be cancelled by the μ dependence of their
coefficients in (4). The point is that for 〈Θα

α 〉 to be non-vanishing
one or both of the leading terms in the OPEs (2) and (3) (that is
mψ(μ) and/or 〈Gαβ Gαβ 〉μ) needs to be present.

This property of the OPEs is a statement about the asymptotic
behavior of the fundamental fields and so the question of whether
vacuum energy vanishes 〈Θα

α 〉 = 0 becomes a question of whether
a certain ultraviolet boundary condition is satisfied by the theory.
Thus for massless QCD (mψ = 0) it becomes a fundamental ques-
tion as to whether the leading term of the gluon mass OPE is or
is not generated by nonperturbative effects that necessarily go be-
yond chiral symmetry breaking. This highlights the importance of
the gluon mass SD equation, which can in principle be used to
determine the asymptotic behavior of the gluon mass function.
In other words the SD approach could tell us whether vanishing
vacuum energy is compatible with a mass gap.

The SD approach provides a nonperturbative framework (along
with the lattice) to define the propagators of the fundamental
fields at all momenta. The behaviors of gluon and ghost propa-
gators that are emerging are deepening our understanding of con-
finement and the mass gap. We note though that any SD analysis
involves a truncation of the complete SD equations and this in-
troduces uncertainties, especially in the precise shape of the mass
functions at low momentum. For our purposes we can have more
confidence in the SD results for the gross features of the asymp-
totic behavior of the gluon mass function. For example the fact
that the asymptotic behavior of the quark mass function in mass-
less QCD is consistent with mψ(μ) = 0 in (2) is a robust result of
the SD analysis.

Significant progress towards obtaining a more accurate SD
equation for the gluon mass has been made [19]. The full SD ker-
nel, which has both one and two loop parts in terms of dressed
quantities, has been reduced to a manageable form with the help
of the pinch technique [20] and the background field method.
Ward identities are maintained to reflect the fact that the gluon
mass function should not explicitly break gauge symmetries. This
is able to sufficiently specify modified vertices Γ → Γ ′ = Γm + V
involving “pole vertices” V . The whole analysis takes place in Lan-
dau gauge.

The following Euclidean space integral equation for the gluon
mass function is obtained [19].

m2(q2) = − 4παsC A

1 + G(q2)

1

q2

∫
d4k

(2π)4
m2(k2)

× Δ
μ
ρ (k)Δνρ(k + q)Kμν(k,q), (5)

Kμν(k,q) = [
(k + q)2 − k2]{1 − [

Y (k + q) + Y (k)
]}

gμν

− [
Y (k + q) − Y (k)

](
q2 gμν − 2qνqν

)
. (6)

The gluon propagator is

Δab
μν(q) = δabΔμν(q) = δab(gμν − qμqν/q2)Δ(

q2). (7)

The factor 1/(1 + G(q2)) is identified with q2 D(q2) where D(q2) is
the ghost propagator, apparently to good approximation. The quan-
tity Y (k) is a one loop sub-diagram in the two loop contribution
to the kernel. If evaluated using tree level propagators and vertices
it is [19]

Y
(
k2) = −αsC A

4π

15

16
log

k2

μ2
. (8)

This introduces a renormalization scale dependence in the SD
equation.

The propagators Δ(q2) and D(q2) are obtained from a fit to lat-
tice data. Since the lattice analysis uses a renormalization scale of
4.3 GeV, this is the choice adopted for μ [19]. The result is an in-
tegral equation which is linear in m2(q2). The latter is obtained
numerically and normalized to agree with the lattice gluon propa-
gator at q2 = 0.

The authors in [21] extend these results to the unquenched
case by incorporating the quark loop contribution, where the quark
propagator used is obtained from the quark SD equation. They start
with the gluon mass solution in the quenched case, where lattice
results for the quenched propagators are used in (6), and then by
incorporating the quark effects via an iterative procedure they ob-
tain a prediction for the modified gluon propagator in the n f = 2
case. The result agrees very well with the lattice n f = 2 result [16]
which simulates 2 light dynamical quarks, and so this is an appar-
ent success of their approach. For our purposes the main point is
that (6) provides a determination of the unquenched gluon mass
function when unquenched lattice results for the propagators are
used. Note that the SD equation as derived, being homogeneous in
m2(q2), is blind to operator mixing between Gαβ Gαβ and mψψψ

and so its results can only apply to massless QCD, mψ = 0.
Given that our interest is in the asymptotic behavior of m2(q2)

we should ensure that the analysis reflects the known asymptotic
behavior of QCD as much as possible. In particular since the prop-
agator functions Δ(q2) and D(q2) are input into the SD equation,
it is simple to introduce their correct asymptotic behavior. From
the renormalization group this is

Δ
(
q2) → ln

(
q2)γ /q2, D

(
q2) → ln

(
q2)δ

/q2 (9)

with γ = −(13C A − 4n f )/(22C A − 4n f ) and δ = −9C A/(44C A −
8n f ) in Landau gauge. γ = −31/58 and δ = −27/116 for n f = 2
and C A = 3 for SU (3).

We shall implement this asymptotic behavior while fitting the
propagator functions to the n f = 2 lattice results, which exist for
a range of momenta up to q2 ∼ μ2. In particular we fit q2Δ(q2) to
the SDE curve on the first plot in Fig. (9) in [21] and q2 D(q2) to
the green curve on the first plot in Fig. (4) in [16]. We can obtain
good fits via the following simple fitting functions, which are only
meant to extend down to ∼ 10−3 GeV2.

Δ
(
q2)−1 = m2

0 + q2[a + b ln
(
q2 + c

)−γ ]
, (10)

D
(
q2)−1 = q2[d + e ln

(
q2 + f

)−δ]
, (11)

m0 is set to the q2 = 0 lattice value m0 = 0.413 GeV and
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