
D0-D0 mixing: recent experimental results and intriguing prospects
Michael G. Wilsona

aSanta Cruz Institute for Particle Physics, University of California, Santa Cruz, California 95064, U.S.A.

A summary of the present experimental limits on quantities related to D0-D0 mixing is presented, with an emphasis on
techniques that may achieve sensitivity to aspects of this phenomenon in the near future. The most stringent constraints on D-
mixing parameters to date have been obtained by analyzing the decays D0 → K+π−, where the time-integrated rate has been
determined to be RM < 0.04% with 95% confidence. In the future, analyses of interference effects may be able to distinguish
the contributions from x and y to the mixing rate.

1. INTRODUCTION

Although K0-K0 mixing and B0-B0 mixing are
well established,D0-D0 mixing is yet to be observed.
As this particular mixing phenomenon is sensitive to
new physics in a complementary manner to theK and
B systems, it is an essential test of the completeness
of the Standard Model. However, unlike B-mixing
phenomena, which can be accurately calculated in
the Standard Model from box diagrams, D-mixing
phenomena are difficult to calculate because of dom-
inant contributions from long-distance effects. The
importance of these long-distance contributions has
long been recognized [1,2], and more recent calcula-
tions [3,4] have predicted rates at the level of current
experimental sensitivities, RM ∼ O(10−4), where
RM is the time-integrated mixing rate. In particular,
the contribution from the mass difference of the mass
eigenstates may be as large as that from the width
difference [4]. Thus, an observation of D mixing at
the current experimental level of sensitivity would not
necessarily imply new physics. Nevertheless, mix-
ing phenomena have been historic predictors of new
physics, and the possibility of discovering new CP -
violating effects in the D system makes its experi-
mental analysis compelling.

A thorough review ofD mixing is given in Ref. [5].
The two mass eigenstates

|DA,B〉 = p|D0〉 ± q|D0〉 (1)

generated by mixing dynamics have different masses
(mA,B) and widths (ΓA,B), and we parameterize the

mixing process with the quantities

x ≡ 2
mB −mA

ΓB + ΓA
, y ≡ ΓB − ΓA

ΓB + ΓA
. (2)

It is not currently known which of the mass eigen-
states is more massive, nor which is longer lived.
Also, it is not known whetherCP is a conserved quan-
tity in this system. Thus, the labels (A) and (B) are
used to denote the two mass eigenstates. If CP is not
violated, then |p/q| = 1. The time-integrated mixing
rate is approximately

RM = (x2 + y2)/2. (3)

This is a useful quantity that can be compared among
different experimental analyses.

Four general experimental techniques which may
be able to reveal the characteristics of D mixing in
the near future are discussed. The first technique is to
measure directly the lifetime difference y by measur-
ing the D0 lifetime in decays to CP eigenstates. The
second technique is to search for evidence of mixing
in the decay-time distributions of final states that re-
ceive contributions from mixing. This technique is
sensitive to the mixing rate RM . A third technique,
recently presented by the CLEO Collaboration [6], in-
volves a time-dependent analysis of the resonant be-
havior of a multibody final state. To the extent that
interference effects can be measured, both of the pa-
rameters x and y can be determined. Finally, a fourth
technique will use the coherent production of D0D0

pairs accessible to the CLEO-c and BES-III experi-
ments to study mixing phenomena [7]. Ref. [8] dis-
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cusses some additional details of these analyses not
included herein.

2. MEASURING ΔΓ

It is possible to measure the lifetime difference, y,
of the two mass eigenstates directly, without search-
ing for evidence of oscillations in decay-time distribu-
tions. In the context of the mixing searches sensitive
only to RM (Sec. 3), an independent measurement of
y becomes very valuable, as it is difficult to get an
independent handle on the mass difference, x. As-
suming CP invariance,

y =
τ

τCP+
− 1, (4)

where τ is the D0 lifetime measured in decays to a
non-CP eigenstate, such as D0 → K−π+, and τCP+

is the lifetime measured in decays to CP -even eigen-
states, such as D0 → K−K+ or D0 → π−π+. It
would also be possible to perform a similar analysis
with decays to CP -odd eigenstates, such as D0 →
K0

Sφ, although such an analysis has not yet been
done. For reference, the world-average D0 lifetime
is τ = 410.3± 1.5 fs [9]. At the B factories, this cor-
responds to a decay length of approximately 200μm,
which is of the same scale as the decay-length resolu-
tion for these decays.

In the more general case that allows for possible
CP violation in either mixing or interference between
decay and mixing, we define the quantities Y and
ΔY ,

Y =
τ

〈τCP+〉 − 1 (5)

ΔY =
τ

〈τCP+〉Aτ+, (6)

where 〈τCP+〉 is the average lifetime to the CP -even
eigenstate,

〈τCP+〉 =
1
2

(
τD0

CP+ + τD0

CP+

)
, (7)

and Aτ+ is the asymmetry between the two lifetimes

Aτ+ =
τD0

CP+ − τD0

CP+

τD0

CP+ + τD0

CP+

. (8)

Of the lifetime-ratio measurements that have been
made to date [10–15], the most precise is from the

BABAR Collaboration [15]. In addition to the use of
D0 → K−K+ and D0 → π−π+ tagged samples
following from the decay D∗+ → D0π+ (+ C.C),
this analysis uses a large untagged sample of D0 →
K−K+ candidates. The tagged samples are so called
because the production flavor of the D0 (D0) is
tagged by the charge of the D∗+ (D∗−). The tagged
samples are purer and can be used to search for pos-
sible CP violation; the untagged sample has more
signal events, but with a significantly lower signal-
to-background ratio.

The results of the BABAR analysis, including 26,000
taggedK−K+ candidates from 91 fb−1 of e+e− col-
lisions, are

Y = (0.8 ± 0.4 (stat.) +0.5
−0.4 (syst.))% (9)

ΔY = (−0.8 ± 0.6 (stat.) ± 0.2 (syst.))%. (10)

Assuming CP invariance, this yields the most strin-
gent constraint on y to date. It would be important to
improve this measurement using the larger data sets
available in the near future if a non-zero mixing rate
RM were to be observed using the techniques de-
scribed in the next Section.

3. MEASURING THE MIXING RATE RM

Although the width difference, y, can be mea-
sured directly, the mass difference, x, is experimen-
tally accessible only by searching for evidence of os-
cillations. This evidence manifests itself as a non-
zero mixing rate, RM . If a particular wrong-sign fi-
nal state |f̄〉 is only accessible through the process
D0 → D0 → |f̄〉, then one simply counts the
number of signal events in the final state to deter-
mine the time-integrated mixing rate, RM . This is
the motivation for analyzing the semileptonic decays
D0 → K+�−ν� andD0 → K∗+�−ν�, which are only
allowed via mixing. However, inability to separate
signal from background due to the unreconstructed
ν� seems thus far to compromise the experimental
sensitivity. Of the four analyses of semileptonic
modes to date [16–19], the three most sensitive—
from BABAR [17], CLEO [18], and Belle [19]—report
significantly higher limits on RM than nonleptonic
analyses performed using data samples of compara-
ble integrated luminosities.

Nonleptonic wrong-sign decays, such as D0 →
K+π−, can proceed both through mixing and through
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