The sensitivity of the Higgs boson branching ratios to the W boson width

William Murray
Warwick University/STFC-RAL, United Kingdom

ARTICLE INFO

Article history:

Received 8 April 2016
Received in revised form 26 April 2016
Accepted 27 April 2016
Available online 6 May 2016
Editor: L. Rolandi

Abstract

The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. $\Gamma(H \rightarrow V V)$ is approximately proportional to the product of the Higgs boson coupling and the vector boson width. Γ_{Z} is well measured, but Γ_{W} gives an uncertainty on $\Gamma(H \rightarrow W W)$ which is not negligible. The ratio of branching ratios, $\mathrm{BR}(H \rightarrow W W) / \mathrm{BR}(H \rightarrow Z Z)$ measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of $\Gamma_{W}=1.8_{-0.3}^{+0.4} \mathrm{GeV}$ by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on Γ_{W} is not discussed in most Higgs boson coupling analyses.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

The Higgs boson discovered at LHC[1,2] has been the subject of combined mass[3] and couplings [4] analyses by the ATLAS and CMS collaborations. The couplings analysis uses the socalled κ framework of the LHC Higgs cross-section working group [5,6], and relies upon the cross-section and branching ratio calculations contained therein. This includes the properties of the vector bosons, W and Z, for which the masses reported in the RPP [7], are used to extract pole masses of $m_{Z}=91.15349 \mathrm{GeV}$ and $m_{W}=80.36951 \mathrm{GeV}$ in Ref. [6]. In addition, and especially relevant for this letter, the vector boson widths are calculated from their masses and assuming the Standard Model (SM), to be $\Gamma_{Z}=2495.81 \mathrm{MeV}$ and $\Gamma_{W}=2088.56 \mathrm{MeV}$. The partial widths of the Higgs boson in $W W$ and $Z Z$ states are calculated from these using HDECAY [8,9] and Prophec4F [10,11] which incorporate dominant NLO effects.

The use of the theoretically expected W boson width is not discussed in Ref. [6], it is merely stated. It is not obvious that this is the best motivated assumption when looking for beyond the Standard Model (SM) effects in Higgs boson properties. The primary purpose of this document is to highlight that assumption.

The widths of the Z and W bosons have also been measured experimentally. The Z boson width was measured at LEP [12] to be $2495.2 \pm 2.3 \mathrm{MeV}$. The W boson width has been measured at LEP 2 [13] and the Tevatron [14] to give a combined result of $\Gamma_{W}=$
$2085 \pm 42 \mathrm{MeV}$ [7]. In consequence, effects due to the vector boson width uncertainties are dominated by those from the W boson.

The Higgs boson partial widths and branching ratios are not experimentally accessible at the LHC, where only products of production and decay can be studied. However, the ratio of the branching ratios to $W W$ and $Z Z$, is measurable, and it is presented in Ref. [4]. The measured value of $B R^{W W} / B R^{Z Z}$ is $6.8_{-1.3}^{+1.7}$. The $S M$ value given in Ref. [6] is 8.09.

The measured rate of Higgs bosons into diphoton pairs could also provide information. However additional assumptions would have to be made about the particles in the loop, complicating the interpretation.

2. Analysis of the widths

The full calculation of the Higgs boson partial widths in the SM is rather complex. However, the results are tabulated in Ref. [6], and the approach taken here is to use a leading-order approximation [15], and then scale its results to those in Ref. [6] for the nominal input parameters. The calculation is reproduced below.

$$
\begin{align*}
\Gamma\left(H \rightarrow V^{*} V^{*}\right)= & \frac{1}{\pi^{2}} \int_{0}^{M_{H}^{2}} \frac{d q_{1}^{2} M_{V} \Gamma_{V}}{\left(q_{1}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \\
& \times \int_{0}^{\left(M_{H}-q_{1}\right)^{2}} \frac{d q_{2}^{2} M_{V} \Gamma_{V}}{\left(q_{2}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \Gamma_{0} . \tag{1}
\end{align*}
$$

[^0]

In this formula Γ_{0} is
$\Gamma_{0}=\delta_{V}^{\prime} \frac{G_{F} M_{H}^{3}}{16 \sqrt{2} \pi} \sqrt{\lambda\left(q_{1}^{2}, q_{2}^{2}, M_{H}^{2}\right)}\left(\lambda\left(q_{1}^{2}, q_{2}^{2}, M_{H}^{2}\right)+\frac{12 q_{1}^{2} q_{2}^{2}}{M_{H}^{4}}\right)$
where $\lambda(x, y, z)=(1-x / z-y / z)^{2}-4 x y / z^{2}$ and δ_{V}^{\prime} has different values depending upon the vector boson: $\delta_{W}^{\prime}=2$ and $\delta_{Z}^{\prime}=1$ [15]. This calculation assumes the SM coupling strengths to the W and Z boson.

Fig. 1 shows the density of the partial width of the Higgs to vector boson pairs in the $\left(q_{1}, q_{2}\right)$ plane. The doubly resonant point is not kinematically accessible, and in consequence all the available space is in a region far from the pole of at least one of the integrals. This means the factor Γ_{V} in equation (1) does not cancel in the integral.

The numerical evaluation uses the parameters from the LHC Higgs cross-section working group as given in the introduction and was done using root [16]. To check the calculation it is first evaluated at $m_{H}=126 \mathrm{GeV}$ because Ref. [6] provides partial widths at this mass. The values obtained are 0.941 MeV for $W W$ and 0.119 MeV for $Z Z$. These are respectively 97% and 98% of the values from the reference, 0.974 MeV and 0.122 MeV . This 2-3\% discrepancy with the full calculation shows that the higher order effects are not large.

Having tested the implementation, the partial widths are found at $m_{H}=125.09 \mathrm{GeV}$. They are $\Gamma(H \rightarrow W W)=0.853 \mathrm{MeV}$ and $\Gamma(H \rightarrow Z Z)=0.107 \mathrm{MeV}$.

The ratio of the partial widths gives directly the ratio of the branching ratios, 7.99 . This is about 1% lower then the 8.09 contained in Ref. [6] and the difference is assumed to come from the more complete calculation used in that document. The $2-3 \%$ changes in the $W W$ and $Z Z$ widths have largely cancelled in the ratio. A scale factor of 1.01 is applied to subsequent evaluations.

The ratio $\mathrm{BR}^{W W} / \mathrm{BR}^{Z Z}$ as a function of the W width, ignoring the uncertainties on all the other parameters, is shown in Fig. 2. Had the Higgs boson decayed to two on-shell bosons the width would scarcely have entered. If both vector bosons had been virtual, as is the case for a Higgs boson of 100 GeV or less, the dependence would have been roughly quadratic. With the actual mass there is one real and one virtual gauge boson and the width is, to a good approximation, proportional to Γ_{W}. This supports the

Fig. 2. The ratio $\mathrm{BR}^{W W} / \mathrm{BR}^{Z Z}$ as a function of the W boson width, with all other parameters fixed. The LHC measurement of the ratio of Higgs boson branching ratios $\mathrm{BR}(H \rightarrow W W) / \mathrm{BR}(H \rightarrow Z Z)$, the extracted Γ_{W}, and the SM expectation.
1% correction via a scaling of the ratio to the full calculation. The equation is numerically inverted to find Γ_{W}. This is:
$\Gamma_{W}=1800_{-300}^{+400} \mathrm{MeV}$

2.1. Errors from the extraction procedure

The Higgs boson mass of $125.09 \pm 0.21 \pm 0.11 \mathrm{GeV}$ has the largest mass uncertainty in the formula. It changes the extracted value of Γ_{W} by around 0.2 MeV , which is clearly negligible, and similarly the W and Z boson masses contribute negligible uncertainty.

The Z boson width is known to 2 per mile, and this translates to a 2 MeV uncertainty on the prediction of $\Gamma(H \rightarrow Z Z)$. This is far below the precision achievable at LHC and is ignored here. The

https://daneshyari.com/en/article/1850135

Download Persian Version:

https://daneshyari.com/article/1850135

Daneshyari.com

[^0]: E-mail address: bill.murray@cern.ch.

