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We study the heavy quarkonium within the basis light-front quantization approach. We implement the 
one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt 
the holographic light-front wavefunction (LFWF) as our basis function and solve the non-perturbative 
dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and 
bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form 
factors for selected eigenstates. The results are compared with the experimental measurements and with 
other established methods.
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1. Introduction

Describing hadrons from quantum chromodynamics (QCD) re-
mains a fundamental challenge in nuclear physics. Inspired by 
the discovery of a remarkable gauge/string duality [1], holographic 
QCD models, most notably the AdS/QCD [2], have been proposed 
as analytic semi-classical approximations to QCD (for a recent re-
view, see Ref. [3]). In light of these phenomenological successes, as 
well as the recent progress in the ab initio nuclear structure calcu-
lations [4–7], the basis light-front quantization (BLFQ) [8] has been 
developed as a non-perturbative approach to address QCD bound-
state problems from first principles.

BLFQ is based on the Hamiltonian formalism in light-front dy-
namics (LFD, [9]) in Minkowski space. The central task of the 
Hamiltonian approach is to diagonalize the QCD Hamiltonian oper-
ator,

P+ P̂−|ψh〉 = M2
h |ψh〉. (1)

Here P± = P 0 ± P 3 is the longitudinal momentum and the light-
front quantized Hamiltonian operator, respectively. The eigenvalues 
directly produce the invariant-mass spectrum. The eigenfunctions, 
known as the light-front wavefunctions (LFWFs), play a pivotal role 
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in the study of the hadron structures in deep inelastic scattering 
(DIS) [10] and deeply virtually Compton scattering (DVCS) [11]. In 
the Fock space expansion, Eq. (1) becomes a relativistic quantum 
many-body problem and can be solved by constructing and diag-
onalizing the many-body Hamiltonian matrix (see, e.g., [12] for a 
review).

The advantages of LFD are made explicit by BLFQ which can 
employ an arbitrary single-particle basis subject to completeness 
and orthonormality. By adopting a single-particle AdS/QCD basis, 
BLFQ naturally extends the AdS/QCD LFWFs to the multi-particle 
Fock sectors [8]. Furthermore, this basis preserves all the kine-
matical symmetries of the full Hamiltonian [13,14]. Such choice 
is in parallel with the no-core shell model (NCSM) used in non-
relativistic quantum many-body theory [5]. State-of-the-art com-
putational tools developed in the many-body theory can be used to 
address the QCD eigenvalue problem [15]. BLFQ has been applied 
successfully to a range of non-perturbative problems, including the 
electron anomalous magnetic moment [16,17], non-linear Compton 
scattering [18,19] and the positronium spectrum [20,21]. In this 
paper, we apply the BLFQ approach to the heavy quarkonium.

Working with the full QCD Hamiltonian is a formidable task. In 
practice, we truncate the Fock space to a finite number of particles. 
The leading-order truncation |qq̄〉 +|qq̄g〉 introduces the one-gluon 
exchange which produces correct short-distance physics as well as 
the spin-dependent interaction needed for the fine and hyperfine 
structures. The Abelian version of this interaction was extensively 
used in the literature [20,22–25] to calculate the QED bound-state 

http://dx.doi.org/10.1016/j.physletb.2016.04.065
0370-2693/Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2016.04.065
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:leeyoung@iastate.edu
mailto:pmaris@iastate.edu
mailto:xbzhao@impcas.ac.cn
mailto:jvary@iastate.edu
http://dx.doi.org/10.1016/j.physletb.2016.04.065
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.04.065&domain=pdf


Y. Li et al. / Physics Letters B 758 (2016) 118–124 119

spectrum in LFD. However, the one-gluon exchange itself is not 
sufficient to reproduce the hadron spectrum since confinement is 
also needed. Holographic QCD provides an appealing approxima-
tion to confinement.

Heavy quarkonium is an ideal laboratory for studying non-
perturbative aspects of QCD and their interplay with the per-
turbative physics [26]. Conventional theoretical tools include the 
non-relativistic potential models (NRPMs) [27,28], non-relativistic 
QCD (NRQCD) [29], heavy quark effective field theory [30], Dyson–
Schwinger Equations (DSE) [31–34], and Lattice QCD [35]. The re-
cent discoveries of tetraquark [36] and pentaquark [37] states have 
renewed interests in the theoretical investigation of heavy quarko-
nium. Extensive data on heavy quarkonium have been produced by 
experimental facilities, such as Belle, CLEO and LHC.

Numerous light-front phenomenologies have been developed 
for heavy quarkonium (see e.g. [38–44] and the references therein). 
Our approach shares some similarity with these models. Yet, there 
are also major differences. First of all, our approach employs holo-
graphic QCD (confining interaction) and realistic LFQCD (one-gluon 
exchange). Secondly and most importantly, we solve quarkonium 
as a two-body bound-state problem using a Hamiltonian method 
that is applicable to arbitrary many-body bound states, once the 
(effective) Hamiltonian and the basis space are specified. We ex-
ploit the fact that BLFQ is developed as a flexible computational 
platform for relativistic strong interaction many-body bound-state 
problems [8,15], designed to deal with general Hamiltonians, real-
istic or phenomenological.

Our goal in this work can be simply stated: we aim to improve 
the light-front holographic QCD results [45] by including a realistic 
one-gluon exchange interaction. Computationally, we intend to lay 
the foundation for the extension to higher Fock sectors.

2. Effective Hamiltonian

2.1. Phenomenological confinement

Our effective Hamiltonian consists of the holographic QCD 
Hamiltonian and the one-gluon exchange. We adopt the light-front 
AdS/QCD soft-wall (SW) Hamiltonian for the first part [46]. This 
simple model gives a reasonable description of the hadron spec-
trum and structures (see Ref. [45] for a review). Its effective “light-
cone” Hamiltonian reads,

Hsw ≡ P+ P̂−
sw

− P 2⊥ = k2⊥
x(1 − x)

+ κ4x(1 − x)r2⊥, (2)

where, x = p+
q /P+ is the longitudinal momentum fraction of 

the quark, k⊥ = pq⊥ − xP ⊥ is the relative transverse momen-
tum, and r⊥ is the transverse separation of the partons. κ is 
the strength of the confining potential. Note that the “light-cone 
Hamiltonian” has mass squared dimension, whose eigenvalues are 
the squared invariant masses. Following Brodsky and de Téra-
mond [46], it is convenient to introduce the holographic coordinate 
ζ⊥ = √

x(1 − x)r⊥ , and its conjugate q⊥ = k⊥/
√

x(1 − x) ≡ −i∇ζ⊥ . 
In light-front holography, ζ⊥ is mapped to the fifth coordinate z of 
the AdS space. In these coordinates, Hsw is a harmonic oscillator 
(HO),

Hsw = q2⊥ + κ4ζ 2⊥. (3)

Its eigenvalues follow the Regge trajectory M2 = 2κ2(2n +|m| + 1). 
Its eigenfunctions are 2D HO functions in the holographic vari-
ables,

φnm(q⊥) = eimθ
(q⊥

κ

)|m|
e−q2⊥/(2κ2)L|m|

n (q2⊥/κ2). (4)

Here q⊥ = |q⊥|, θ = arg q⊥ , and Lm
n (z) is the associated Laguerre 

polynomial. We adopt these functions as our basis. This basis 
has the advantage that in the many-body sector, it allows the 
exact factorization of the center-of-mass motion in the single-
particle coordinates. This is a very valuable property, because the 
boson/fermion symmetrization/anti-symmetrization in the relative 
coordinates quickly becomes intractable, as the number of identi-
cal particles increases [13,14]. For this work, however, we do not 
have identical particles in the qq̄ sector and we will use the rela-
tive coordinate. In future extensions, as sea quarks and gluons are 
added, it may be more advantageous to adopt single-particle coor-
dinates.

The soft-wall Hamiltonian Eq. (3) is designed for massless 
quarks, and it is inherently 2-dimensional. For the heavy quarko-
nium systems, it should be modified to incorporate the quark 
masses and the longitudinal dynamics,

Hsw → Hcon = q2⊥ + κ4ζ 2⊥ + m2
q

x
+ m2

q̄

1 − x
+ V L(x). (5)

Here V L is a longitudinal confining potential. Several longitudinal 
confining potentials have been proposed [47–49]. Here we propose 
a new longitudinal confinement which shares features with others 
proposed,

V L(x) = − κ4

(mq + mq̄)
2
∂x

(
x(1 − x)∂x

)
, (6)

where ∂x ≡ (∂/∂x)ζ⊥ . This term combined with the mass term 
from the kinetic energy forms a Sturm–Liouville problem,

−∂x
(
x(1 − x)∂xχl(x)

) + 1

4

( α2

1 − x
+ β2

x

)
χl(x) = λ

(α,β)

l χl(x), (7)

where α = 2mq̄(mq + mq̄)/κ
2, β = 2mq(mq + mq̄)/κ

2. The solutions 
of Eq. (7) are analytically known in terms of the Jacobi polynomial 
P (a,b)

l (z),

χl(x) = x
1
2 α

(1 − x)
1
2 β P (α,β)

l (2x − 1) (8)

and form a complete orthogonal basis on the interval [0, 1]. The 
corresponding eigenvalues are

λ
(α,β)

l = (l + 1
2 (α + β))(l + 1

2 (α + β) + 1), (l = 0,1,2, · · · ).
(9)

Comparing to other forms of longitudinal confinement, our 
proposal implements several attractive features. First, the basis 
functions resemble the known asymptotic parton distribution ∼
xα(1 − x)β with α, β > 0 [50]. This is our primary motivation for 
adopting the longitudinal confinement Eq. (6). Second, the basis 
function is also analytically known, which brings numerical con-
venience. Third, in the non-relativistic limit min{mq, mq̄} 
 κ , the 
longitudinal confinement sits on equal footing with the transverse 
confinement, where together, they form a 3D harmonic oscillator 
potential,

V con = mqmq̄

(mq + mq̄)
2
κ4r2, (10)

and rotational symmetry is manifest. This non-relativistic reduc-
tion also provides us an order-of-magnitude estimate of the model 
parameters for our heavy quarkonium application. Fourth, in the 
massless limit max{mq, mq̄} � κ , the longitudinal mode stays in 
the ground state and the longitudinal wavefunction χ0(x) = const. 
Thus we restore the massless model of Brodsky and de Téramond.1

1 Note that in our normalization convention, the LFWFs differ from Brodsky et 
al.’s [45] by a factor √x(1 − x).
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