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We present a neat example of a meson–baryon system where the vicinity of two different thresholds 
enhances the binding of a hadronic resonance, a pentaquark. As a consequence the pattern of states may 
change when moving among different flavor sectors, what poses a warning on naive extrapolations to 
heavy flavor sectors based on systematic expansions. For this purpose we simultaneously analyze the 
N D̄ and N B two-hadron systems looking for possible bound states or resonances. When a resonance 
is controlled by a coupled-channel effect, going to a different flavor sector may enhance or diminish 
the binding. This effect may, for example, generate significant differences between the charmonium and 
bottomonium spectra above open-flavor thresholds or pentaquark states in the open-charm and open-
bottom sectors.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The interpretation of the recently discovered baryonic states at 
the LHCb, Pc(4380)+ and Pc(4450)+ [1], as well as some of the 
exotic mesonic states discovered in the hidden-charm or hidden-
beauty sector is still puzzling [2,3]. A common feature of all these 
states seems to be the proximity of their masses to two-hadron 
thresholds. Their naive description as simple baryon–meson or 
meson–meson resonances gave rise to predictions of bound states 
in heavier flavor sectors by different spectroscopic models, like 
those based on the traditional meson theory of the nuclear forces 
or resorting to heavy quark symmetry arguments [4,5].

In a recent paper [6] a mechanism to explain the stabil-
ity or metastability of the exotic mesonic states discovered in 
the hidden-charm or hidden-beauty sector was proposed. It was 
pointed out how two effects have to come together to allow for 
the formation of a bound state above open-flavor thresholds: the 
presence of two nearby thresholds and a strong coupling between 
them, in spite of the fact that the diagonal interactions contribut-
ing to this state are not strong. Thus, such mechanism, as long as 
it is possible avoids the risk of proliferation of states appearing in 
some quark-model calculations.

For the X(3872) this is well plausible [7]. It was pointed out 
that two of the possible dissociation thresholds are almost exactly 
degenerate, the one corresponding to spin-singlet charmed meson 
plus a spin-triplet anti-charmed meson (or conjugate), and the one 
made of a light vector-meson and a charmonium vector-meson. For 
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instance, in the flavor-SU(3) limit, the H dibaryon benefits of the 
degeneracy of the �� and N� thresholds, and is found stable in 
some model calculations, whereas for broken SU(3) the degeneracy 
is lost and the H dibaryon becomes unstable in the same mod-
els [8].

This idea had been already anticipated in a qualitative analysis 
of the possible dissociation thresholds of four-quark systems with 
a Q Q̄ nn̄ structure (in the following n stands for a light quark and 
Q for a heavy c or b quark), making stringent predictions as the 
non-existence of a bottom partner for the X(3872) or the exis-
tence of exotic doubly heavy mesons [9]. While the first prediction 
seems to survive experiment in contrast to those of other theoret-
ical models [4,5], the second is still awaiting for an experimental 
effort [10]. We wonder if there could be a neat example where one 
could think of some degeneracy of two baryon–meson thresholds 
leading to exotic or crypto-exotic baryons, as it may be the case 
for some of the exotic meson states [9]. The existence of an ex-
otic state in a given flavor sector can not be naively generalized to 
other flavor sectors in case of loss of the vicinity of the thresholds. 
In a similar manner, its non-existence in a particular flavor sector 
does not exclude its presence in different flavor sectors.

In this letter we discuss a relevant example of a five-quark state 
in the N B two-hadron system that clearly exemplifies the impor-
tance of the mechanism we have previously presented. It should 
be considered in the phenomenological analysis of the recently 
reported pentaquark states and may serve as a guideline for the 
study of the pattern of exotic states in the baryon and meson sec-
tors [2]. Our findings come up in the shadow of a previous study 
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Table 1
Interacting baryon–meson channels in the isospin–spin (T , J )
basis.

T = 0 T = 1 T = 2

J = 1/2 N B − N B∗ N B − N B∗ − �B∗ �B∗

J = 3/2 N B∗ N B∗ − �B − �B∗ �B − �B∗

J = 5/2 – �B∗ �B∗

of a different two-hadron system, N D̄ , whose generalization to the 
bottom case gave rise to an a priori unexpected result that remarks 
the effect of the almost degeneracy of two different baryon–meson 
thresholds.

In Ref. [11] we studied the N D̄ system by means of a chiral 
constituent quark model. Our main motivation at that time was 
the study of the interaction of D mesons with nucleons which is a 
goal of the P̄ANDA Collaboration at the European facility FAIR [12]. 
Thus, our theoretical study was a challenge to be tested at the 
future experiments. In this letter we perform a parallel study of 
the N B system (with a similar quark structure, nnnnQ̄ ) looking 
for similarities and differences with respect to the N D̄ system. 
Our objective is to highlight a particular case where the vicinity 
of thresholds will enhance the binding of the baryon–meson sys-
tem disrupting the number and the ordering of states obtained in 
the charm sector. Although the conclusions of this study aim to 
be independent of the particular details of the interacting model 
used, we for instance made use of the chiral constituent quark 
model (CCQM) of Ref. [13]. It was proposed in the early 90’s in 
an attempt to obtain a simultaneous description of the nucleon–
nucleon interaction and the baryon spectra [14]. It was later on 
generalized to all flavor sectors giving a reasonable description of 
the meson and baryon spectra. The model is based on the as-
sumption that the light-quark constituent mass appears because of 
the spontaneous breaking of the original SU (3)L ⊗ SU (3)R chiral 
symmetry at some momentum scale. In this domain of momenta, 
quarks interact through Goldstone boson exchange potentials. QCD 
perturbative effects are taken into account through the one-gluon-
exchange potential. Finally, it incorporates confinement as dictated 
by unquenched lattice QCD calculations. A detailed discussion of 
the model can be found in Refs. [13,14].

The systems under study, N D̄ and N B , do not present quark–
antiquark annihilation complications that may obscure the predic-
tions of a particular model under some non-considered dynamical 
effects. They contain a heavy antiquark, what makes the interac-
tion rather simple. The quark-model used provides parameter-free 
predictions for the interaction in a baryon–meson system with 
charm −1 or bottom +1. Besides, the existence of identical light 
quarks in the two hadrons generates quark-Pauli effects in some 
particular channels, what gives rise to an important short-range 
repulsion due to lacking degrees of freedom to accommodate the 
light quarks [14].

To study the possible existence of exotic states made of a light 
baryon, N and �, and a charmed meson, D̄ and D̄∗ , or a bottom 
meson, B and B∗ , we solve the Lippmann–Schwinger equation for 
negative energies looking at the Fredholm determinant D F (E) at 
zero energy [15]. If there are no interactions then D F (0) = 1, if 
the system is attractive then D F (0) < 1, and if a bound state exists 
then D F (0) < 0. This method permitted us to obtain robust pre-
dictions even for zero-energy bound states, and gave information 
about attractive channels that may lodge a resonance [7]. We con-
sider a baryon–meson system Q i R j (Q i = N or � and R j = D̄ or 
D̄∗ for charm −1 and R j = B or B∗ for bottom +1) in a relative 
S state interacting through a potential V that contains a tensor 

force. Then, in general, there is a coupling to the Q i R j D wave. 
Moreover, the baryon–meson system can couple to other baryon–
meson states, Q k Rm . We show in Table 1 the coupled channels 
in the isospin–spin (T , J ) basis for the N B system (for the N D̄
system one would replace B by D̄ and B∗ by D̄∗). Let us briefly 
sketch the method to look for bound state solutions using the 
Fredholm determinant. If we denote the different baryon–meson 
systems as channel Q i R j ≡ An , the Lippmann–Schwinger equation 
for the baryon–meson scattering becomes

t
�α sα,�β sβ
αβ;T J (pα, pβ; E)

= V
�α sα,�β sβ
αβ;T J (pα, pβ)

+
∑

γ =A1,A2,···

∑
�γ =0,2

∞∫
0

p2
γ dpγ V

�α sα,�γ sγ
αγ ;T J (pα, pγ )

× Gγ (E; pγ )t
�γ sγ ,�β sβ
γ β;T J (pγ , pβ; E) , α,β = A1, A2, · · · , (1)

where t is the two-body scattering amplitude, T , J , and E are 
the isospin, total angular momentum and energy of the system, 
�αsα , �γ sγ , and �β sβ are the initial, intermediate, and final orbital 
angular momentum and spin, respectively, and pγ is the relative 
momentum of the two-body system γ . The propagators Gγ (E; pγ )

are given by

Gγ (E; pγ ) = 2μγ

k2
γ − p2

γ + iε
, (2)

with

E = k2
γ

2μγ
, (3)

where μγ is the reduced mass of the two-body system γ . For 
bound-state problems E < 0 so that the singularity of the propaga-
tor is never touched and we can forget the iε in the denominator. 
If we make the change of variables

pγ = d
1 + xγ

1 − xγ
, (4)

where d is a scale parameter, and the same for pα and pβ , we can 
write Eq. (1) as

t
�α sα,�β sβ
αβ;T J (xα, xβ; E)

= V
�α sα,�β sβ
αβ;T J (xα, xβ)

+
∑

γ =A1,A2,···

∑
�γ =0,2

1∫
−1

d2
(

1 + xγ

1 − xγ

)2 2d

(1 − xγ )2
dxγ

× V
�α sα,�γ sγ
αγ ;T J (xα, xγ ) Gγ (E; pγ ) t

�γ sγ ,�β sβ
γ β;T J (xγ , xβ; E) . (5)

We solve this equation by replacing the integral from −1 to 1 by a 
Gauss–Legendre quadrature which results in the set of linear equa-
tions

∑
γ =A1,A2,···

∑
�γ =0,2

N∑
m=1

M
n�α sα,m�γ sγ
αγ ;T J (E) t

�γ sγ ,�β sβ
γ β;T J (xm, xk; E)

= V
�α sα,�β sβ
αβ;T J (xn, xk) , (6)

with
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