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Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We 
here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is 

bounded from above by the dimensionless inequality Mμ < m ·
√

2(1+γ )(1−√
1−γ 2)−γ 2

4γ 2 , where {μ, m} are 
respectively the proper mass and azimuthal harmonic index of the scalar field and γ ≡ r−/r+ is the 
dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically
derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with 
recent numerical computations of the instability resonance spectrum.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The intriguing physical mechanism of superradiance [1–3] al-
lows an incident bosonic wave field to extract rotational energy 
from a spinning Kerr black hole. In particular, a scalar field mode 
of azimuthal harmonic index m can be amplified (that is, can gain 
energy) as it scatters off a Kerr black hole if its proper frequency 
ωfield lies in the bounded regime [1–4]

0 < ωfield < m�H, (1)

where [5–7]

�H = a

r2+ + a2
(2)

is the angular velocity of the spinning Kerr black hole (here a and 
r+ are respectively the angular momentum per unit mass and the 
outer horizon-radius of the Kerr black hole).

What is even more remarkable is the fact that the rate of en-
ergy extraction from the spinning Kerr black hole in the superra-
diant regime (1) can grow exponentially in time if the scattered 
scalar wave field, which is used to extract the black-hole rotational 
energy, is prevented from radiating its energy to infinity. Interest-
ingly, the Klein–Gordon wave equation for a scalar field of mass μ
[8–11] in the Kerr black-hole spacetime is governed by an effective 
binding potential [see Eqs. (18) and (19) below] which provides a 
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natural confinement mechanism that prevents low frequency field 
modes in the regime

0 < ωfield < μ (3)

from escaping to infinity. Scalar field modes which respect the in-
equalities (1) and (3) in the rotating Kerr black-hole spacetime can 
grow exponentially over time [8], thus leading to the formation of 
a composed Kerr-black-hole-massive-scalar-field bomb [12,13].

The boundary between stable (ω > m�H) and unstable
(ω < m�H) composed Kerr-black-hole-massive-scalar-field systems 
is marked by the presence of stationary field configurations whose 
orbital frequencies are in resonance with the angular velocity �H
of the spinning black hole [9,10]. Specifically, for a given value of 
the field azimuthal harmonic index m, these marginally-stable (sta-
tionary) bound-state field configurations are characterized by the 
resonance relation [9,10]

ωfield = ωc ≡ m�H, (4)

where ωc is the critical (threshold) frequency for superradiant 
scattering in the Kerr black-hole spacetime.

It was previously proved [14,15] that, for a scalar field of proper 
mass μ interacting with a spinning Kerr black hole of angular ve-
locity �H, the inequality

μ <
√

2 · m�H (5)

provides an upper bound on the domain of existence of station-
ary Kerr-black-hole-massive-scalar-field configurations. Since these 
stationary (marginally-stable) field configurations mark the bound-
ary between stable and unstable Kerr-massive-scalar-field systems, 
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the relation (5) also provides an upper bound on the superradiant 
instability regime of the composed Kerr-black-hole-massive-scalar-
field system.

The main goal of the present paper is to derive a stronger upper 
bound on the superradiant instability regime of the spinning Kerr 
black-hole spacetime [16]. In particular, below we shall show that 
the binding potential well, which is required in order to support 
the stationary (marginally-stable) scalar field configurations (4) in 
the rotating Kerr black-hole spacetime, exists only in a restricted 
regime μ/m�H < F(γ ) [17] of the black-hole-field physical pa-
rameters. Since this inequality sets an upper bound on the domain 
of existence of these marginally-stable (stationary [16]) field con-
figurations in the rotating Kerr black-hole spacetime, it also sets 
an upper bound on the superradiant instability regime of the com-
posed Kerr-black-hole-massive-scalar-field system.

2. Description of the system

We shall study the dynamics of a massive scalar field � which 
is linearly coupled to a spinning Kerr black hole. The black-hole 
spacetime is described by the line element [5,6]

ds2 = − �

ρ2
(dt − a sin2 θdφ)2 + ρ2

�
dr2 + ρ2dθ2

+ sin2 θ

ρ2

[
adt − (r2 + a2)dφ

]2
, (6)

where (t, r, θ, φ) are the Boyer–Lindquist coordinates, {M, a} are 
the mass and angular momentum per unit mass of the black hole, 
and

� ≡ r2 − 2Mr + a2 ; ρ2 ≡ r2 + a2 cos2 θ. (7)

The zeros of �,

r± = M ±
√

M2 − a2, (8)

are the (outer and inner) horizon radii of the spinning black hole.
The dynamics of a linearized scalar field � of proper mass μ

in the black-hole spacetime is governed by the Klein–Gordon wave 
equation

(∇ν∇ν − μ2)� = 0. (9)

One can decompose the eigenfunction � of the massive scalar field 
in the form [18]

�(t, r;ω,θ,φ)

=
∑
l,m

eimφ Slm(θ;m,a
√

μ2 − ω2)Rlm(r; M,a,μ,ω)e−iωt . (10)

Substituting (10) into the Klein–Gordon wave equation (9), one 
finds that the angular function Slm satisfies the angular equa-
tion [19–24]

1

sin θ

d

dθ

(
sin θ

dSlm

dθ

)

+
[

Klm + a2(μ2 − ω2) sin2 θ − m2

sin2 θ

]
Slm = 0. (11)

Demanding the angular functions to be regular at the two poles 
θ = 0 and θ = π , one finds that the differential equation (11)
is characterized by a discrete set {Klm} of angular eigenvalues 
(see [25–27] and references therein). Below we shall use the fact 
that the characteristic eigenvalues of the angular equation (11) are 
bounded from below by the relation [27,28]

Klm ≥ m2 − a2(μ2 − ω2). (12)

The radial function Rlm satisfies the radial equation [19,20]

�
d

dr

(
�

dRlm

dr

)
+

{
[ω(r2 + a2) − ma]2

+ �[2maω − μ2(r2 + a2) − Klm]
}

Rlm = 0. (13)

It is worth noting that the angular eigenvalues {Klm} couple equa-
tion (13) for the radial eigenfunctions to equation (11) for the 
angular eigenfunctions [29]. The radial equation (13) should be 
supplemented by the physical boundary condition of purely ingo-
ing waves (as measured by a comoving observer) at the horizon of 
the black hole [8–10]:

Rlm ∼ e−i(ω−m�H)y for r → r+ (y → −∞), (14)

where the radial coordinate y is determined by the relation dy =
(r2/�)dr [see Eq. (17) below]. In addition, the asymptotic (large-r) 
behavior [8–10]

Rlm ∼ 1

r
e−√

μ2−ω2 y for r → ∞ (y → ∞) (15)

of the radial eigenfunction, together with the characteristic in-
equality (3), guarantee that the external bound-state configurations 
of the massive scalar fields are characterized by spatially decaying 
(bounded) radial eigenfunctions at asymptotic infinity.

3. The effective binding potential of the composed 
Kerr-black-hole-massive-scalar-field system

Our main goal is to obtain an upper bound on the domain 
of existence of the stationary (marginally-stable) Kerr-black-hole-
massive-scalar-field configurations [16]. To this end, it proves use-
ful to transform the radial equation (13) into a Schrödinger-like 
wave equation. Substituting

ψ = rR (16)

and [30]

dy = r2

�
dr (17)

into the radial equation (13), one obtains the Schrödinger-like 
wave equation

d2ψ

dy2
− V (y)ψ = 0, (18)

where the effective potential which governs the radial equation 
(18) is given by

V = V (r;ω, M,a,μ, l,m)

= 2�

r6
(Mr − a2) + �

r4
[Klm − 2maω + μ2(r2 + a2)]

− 1

r4
[ω(r2 + a2) − ma]2. (19)

Note that this radial potential is characterized by the asymptotic 
properties [see Eqs. (2), (4), and (19)]

V (r = r+;ω = ωc, M,a,μ, l,m) = 0 (20)

and

V (r → ∞;ω = ωc, M,a,μ, l,m) → μ2 − ω2
c > 0 (21)

at the black-hole horizon and at spatial infinity, respectively.
In the next section we shall analyze the spatial properties of 

the effective radial potential (19) for the stationary [16] bound-
state configurations of the massive scalar fields in the rotating 
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